

Fi2

OLS \#12 BEARING RETROFIT

ACCEPTANCE TEST REPORT
VOLUME I OF III
SUMMARY AND SPECIFICATION REQUIREMENTS
(CDRL 006A1)

Contract F04701-90-C-0028

Prepared For
UNITED STATES AIR FORCE Headquarters, Space Division Los Angeles, California

Prepared By

> WESTINGHOUSE ELECTRIC CORPORATION
> Defense and Electronics Center
> Baltimore, Maryland

$$
5: 3
$$

TABLE OF CONTENTS

PAGE
1.0 Introduction 1-1
1.1 Summary of System - Specific Parameters 1-2
1.2 Specification Pass-Fail Summary 1-5
1.3 Summary of OLS \#12 Testing 1-8
1.4 Configuration \& Serialized Assemblies 1-9
1.5 Thermal Vacuum Profiles 1-20
1.6 Test History Calendar 1-24
2.0 Development Specification Requirements 2-1
2.1 Spectra 2-1
2.2 Geometric Resolution 2-5
2.2.1 Fine Geometric Resolution - Infrared 2-5
2.2.2 Fine Geometric Resolution - Daytime Visual 2-43
2.2.3 Smooth Geometric Resolution - Infrared 2-62
2.2.4 Smooth Geometric Resolution - Daytime Visuai 2-75
2.2.5 Smooth Geometric Resolution - Nighttime Visual 2-88
2.2.6 Data Sampling 2-101
2.3 Geometric Accuracy 2-102
2.4 Radiometric Accuracy 2-108
2.4.1 T Channel Radiometric Accuracy 2-108
2.4.2 Daytime Radiometric Accuracy 2-165
2.4.3 Nighttime Radiometric Accuracy. 2-170
2.4.4 Gain Control Accuracy 2-172
2.4.5 Gain Control Adjustability 2-173
2.4.6 A/D Conversion \& Algorithms 2-175
2.5 Radiometric Resolution 2-176

TABLE OF CONTENTS (Cont'd.)

PAGE
2.6 Noise 2-178
2.6.1 T Channel Noise 2-178
2.6.2 L Channel Noise - Day 2-181
2.6.3 L Channe] Noise - Night 2-183
2.6.4 Dark Current 2-185
2.6.5 Stability 2-186
2.6.6 Along-Track Noise Integration 2-187
2.6.7 G1are Suppression 2-188
2.7 Survivability 2-189
2.8 Scan Angle 2-190
2.9 Data Collection Rate 2-191
2.10 Power 2-192
2.11 Mass 2-194
2.11.1 Total Mass 2-194
2.11.2 Component Mass 2-197
2.12 Cooler Transient Margin 2-198
2.13 Design Features 2-199
2.14 Redundant and Fallback Subsystems 2-200
2.15 Environment 2-202
2.16 Electromagnetic Compatibility 2-203
3.0 INTERFACE SPECIFICATION REQUIREMENTS 3-1
3.1 SSS Alignment Axes 3-2
APPENDIX A - BVS 2579 - "Bearing Retrofit and Retest Plan for OLS 12 thru 16" A-1
APPENDIX B - BVS 2600 - "RDS Rework and Retest Procedure for OLS 12, 13, 14, 15 and 16" B-1

1.0 INTRODUCTION

The OLS \#12 Acceptance Test Report contains the technical data pertinent to the OLS \#12 AVE system. This document is intended to present the Acceptance Test data in terms of the requirements of the Prime Item Development Specification (DMSS-OLS-300) and Interface Specification (IS-YD-810A) for testing associated with bearing retrofit (BVS 2579). A copy of the signed-off BVS 2579 is included in this report as Appendix A. During this same period, BVS 2600 "RDS Rework and Retest Procedure" was performed. Testing for BVS 2600 was done at the functional level only. Therefore, no test results are included as part of this ATR. However, a copy of the signed-off BVS 2600 is included in this report as Appendix B. A special test of T channe] stability was also performed during retrofit. Results of this testing are compiled in BVS 2698, "OLS 12 Stability Testing".

Test results and data have been reviewed and verified by Westinghouse Electric Corporation and USAF representatives. System performance data, test histories, data summaries and system analyses are included in this report. In addition, a complete set of system log books are on file at the contractor's facility and are available for review. The Test History is in log books K41477-- and K40502--.

It is intended that this report provide a complete summary of OLS 12 performance relative to all requirements. Therefore, data showing performance for requirements not verified as part of bearing retrofit are also provided. When data from previous tests are provided it will be so noted.

This Acceptance Test Report consists of 3 volumes as follows:
BVS 2691 OLS \#12 Summary and Specification Requirements
BVS 2692 OLS \#12 Acceptance Vibration Report
BVS 2693 OLS \#12 Alignment \& Synchronization Curves 1-1

```
1.1 Summary of System - Specific Parameters
OLS software Program = OLSPO2J.FS
Gain Constants and Sensor Switch Points
P(0) = 9.375 dB
P(1) = 51.75 dB
P(2) = 0 dB
P(3) = 29.75 dB
S(1) = 59.875 dB
S(2) = 22dB
S(3) = 33.75 dB
(These may change during Early Orbit Calibration.)
PMT HV EST \((\) A532 \()=3.634\) volts \(\pm .250 \mathrm{~V}\)
Cone Cooler S/N 024 with T detector S/N K-5
T Cold Patch EST (A549) curve - see Table next page.
T Cold Patch EST Voltage \(=2.211 \mathrm{~V} \pm .200 \mathrm{~V}\)
TGAIN Left \(=4\)
Right \(=4\) Both \(=4\)
TLEVEL vs M1 temperature range - see second page following for table
VDGA constant for PMTCAL \(=(0440)_{8}\)
Encoder Simulator Bias Constant \(=\) Prim -22 Redun -23
Encoder Simulator Separation Constant \(=\) Prime -7 Redund -6
```


T COLD PATCH TEMP VS EST VOLTS
 CONE COOLER S/N 024
 T DETECTOR S/N K-5

I (deq k$)$	EST (Volts)
95	5.655
96	5.248
97	4.874
98	4.529
99	4.212
100	3.920
101	3.651
102	3.403
103	3.174
104	2.963
105	2.768
106	2.588
107	2.422
108	2.268
109	2.125
110	1.993
111	1.871
112	1.757
113	1.651
114	1.553
115	1.462
116	1.377
117	1.298
118	1.225
119	1.156
120	1.092
121	1.032
122	0.976
123	0.924
124	0.875
125	0.829

TLEVEL $\begin{gathered}\text { OLS \#12 } \\ \text { T DETECTOR } \mathrm{S} / \mathrm{N} \mathrm{K-5}\end{gathered}$

TL	M1 TEMP $^{\circ} \mathrm{C}$)	
1111	-26.019°	to
1110	-21.069°	-21.069°
1101	-16.120°	-11.170°
1100	-11.170°	-6.221°
1011	-6.221°	-1.271°
1010	-1.271°	3.678°
1001	3.678°	8.628°
1000	8.628°	13.577°
0111	13.577°	18.527°
0110	18.527°	23.476°
0101	23.476°	28.426°
0100	28.426°	33.375°
0011	33.375°	38.325°
0010	38.325°	43.274°
0001	43.274°	48.224°
0000	48.224°	53.173°

TLEVEL command changes should be uplinked to the OLS as a function of M1 temperature to maximize T Channel output accuracy.

1.2 Specification Pass-Fail Summary

The following sections of this Acceptance Test Report contain the test results as they pertain to the Development Specification requirements. Each Test Report paragraph heading is followed by the corresponding Segment Spec paragraph number in parentheses.

The table on the following page summarizes the OLS \#12 pass-fail status vs. Development Spec. paragraph number.

DEVELOPMENT SPEC. PARAGRAPH NUMBER		PASS	FAIL
3.2.1.1.1.1	Infrared Spectrum	x	
3.2.1.1.1.2	Vis-Day Spectrum	x	
3.2.1.1.1.3	Vis-Night Spectrum		x
3.2.1.1.2.1	Fine Geometric Resolution - HRD	x	
3.2.1.1.2.1	Fine Geometric Resolution - T	x	
3.2.1.1.2.2	Smooth Geometric Resolution - HRD	x	
3.2.1.1.2.2	Smooth Geometric Resolution - T	x	
3.2.1.1.2.2	Smooth Geometric Resolution - PMT	x	
3.2.1.1.2.3	Data Sampling	x	
3.2.1.1.3.1	Along Track Geometric Accuracy	X	
3.2.1.1.3.2/3	Along Scan Geometric Accuracy	x	
3.2.1.1.4.1.a	T Channel Radiometric Accuracy Repeatability	X	
3.2.1.1.4.1b	T Channel Radiometric Accuracy - Stability	x	
3.2.1.1.4.1c	T Channel Radiometric Accuracy - Fixed	x	
3.2.1.1.4.2	Daytime Radiometric Accuracy	x	
3.2.1.1.4.3	Nighttime Radiometric Accuracy	x	
3.2.1.1.4.5.1	Terminator Location	x	
3.2.1.1.4.5.2	Gain Change Rate	x	
3.2.1.1.4.5.3	Maximum Gain Settings	X	
3.2.1.1.4.5.4	Commandable T-Channel Gain	x	
3.2.1.1.4.5.5	Commandable T-Channel Level	x	
3.2.1.1.4.6.2/3	A/D Conversions \& Algorithms	x	
3.2.1.1.5	Radiometric Resolution	x	
3.2.1.1.6.1	T Channel Noise	x	
3.2.1.1.6.2	L Channel Noise (Day)	x	
3.2.1.1.6.3	L Channel Noise (Night)	x	

DEVELOPMENT SPEC. PARAGRAPH NUMBER		PASS	FAIL
3.2.1.1.6.4	Dark Current	x	
3.2.1.1.6.5	Stability	x	
3.2.1.1.6.6	Along-Track Noise Integration	x	
3.2.1.1.6.7	Glare Suppression	x	
3.2.1.1.7	Survivability	x	
3.2.1.1.8	Scan Angle	x	
3.2.1.1.9	Data Collection Rate	x	
3.2.1.2	Data Management	x	
3.2.1.3.1	$28 V$ Power	x	
3.2.1.3.2	5V Power	x	
3.2.2.1	Total Mass	x	
3.2.2.2	Component Mass	x	
3.2.2.3	Cable Harness Mass	x	
3.2.2.4	Dimensional Limits	x	
3.3	Design Features	x	
4.1/2	Environment	x	
	Shipping \& Storage	x	
INTERFACE SPE	ARAGRAPH NUMBER		
3.1.3	Al ignment	x	

1.3 Summary of OLS \#12 Testing

03-25-91 Began RDS testing per BVS 2600
04-26-91 OSU(x) and SPS (x) vibration
05-20-91 Began Bearing Retrofit testing per BVS 2579
05-23-91 SSS(x, y, z) vibration
05-29-91 Testing stopped to use OLS 12 units with BTM SSS for special BTM T channel testing per BVS 2654

06-09-91 PSU(x) vibration per BVS 2657 (repair of broken wire)
06-26-91 Resumed Bearing Retrofit testing
07-01-91 Began Thermal Vac testing
07-20-91 Break vacuum due to PMT failure
08-06-91 OLS 12 to Blue Room
08-07-91 Replaced PMT with PMT from OLS14
08-09-91 Replaced EST/LMD with unit from OLS14
08-13-91 SSS sine and random vibration
08-16-91 Thermal Vacuum ambient testing
08-19-91 Restarted Thermal Vacuum testing
09-19-91 Thermal Vacuum testing complete
10-27-91 Final Blue Room testing complete

1.4 Configuration and Serialized Assemblies
 The configuration listing on the following pages includes the current configuration of the OLS \#12 as of 12-03-86.

DESCRIPTION	ASSEMBLY NO.	REV.	S/N
Key Drawing	536R500G01	F	5007
SSS Assembly	640R800G08	AM	5007
OSC Assy	623R765G06	AC	5007
HRD Assy	623R754G04	AB	0006
PWR Bd	623R758G03	R	0006
Pre Amp Bd	623R506G03	U	0006
T-Chan	633R049G04	R	0006
T-Chan Bd	633R178G03	AD	0006
Modute	623R727G01	B	5009
Module	623R727G01	B	5010
VDGA/Lin Log	644R150G03	F	5007
Lin Log	644R127G03	P	5007
VDGA	644R152G03	P	5007
VDGA	644R153G03	N	5007
Enc. OPT	688R705H01	C	009
PMT	644R909G04	P	0007
EMR Bd	644R905G03	D	0007
Switch Bd	644R903G04	M	0007
Doubler Bd	644R907G02	F	0007
Regulator Bd	644R807G03	H	0006
Pre Amp Bd	644R935G03	J	5008
HRD Post Amp	644R220G04	G	5007
Post Amp Bd	644R228G04	$A B$	5007
EST/LMD	644R219G03	D	0007
EST/LMD Bd	758R142G02	E	0007
Heater Cont	633R053G09	J	5015
Elect Assy	633R052G03	V	5015

DESCRIPTION	ASSEMBLY NO.	REV.	S/N
Heat Cont	633R053G10	J	5016
Elect Assy	633R052G03	v	5016
Heat Cont	633R053G11	J	5017
Elect Assy	633R052G03	v	5017
Heater Cont	633R053G12	J	5018
Elect Assy	633R052G03	V	5018
Rel Mech I	640R701G02	F	5007
Rel Mech II	640R753G02	H	5007
Rel Mech III	640R381G02	H	5007
T-Cl amp	623R821G01	G	-
T-Cal	623R920G01	B	-
Aux Encd	640R846G04	G	5007
Bd Assy	640R825G04	F	5006
Bd Assy	640R844G04	J	5006
Wire Dia	682R239G03	K	-
Wire Tab	318R708	B	-
Wire Tab	315R386	C	-
Wire Tab	318R709	(-)	-
Motor Assy	623R894G01	B	73L0993
IMC/M3	623R858G02	D	5007
Cover, Cooler	640R320G01	(-)	5007
Cone Cooler	9RA5216H01	J	024
ENPA	682R215G03	M	5007
Al Bd	682R167G03	H	5008
A2 Bd	682RI10G03	T	5007
A3 Bd	682RI12G03	P	5007
Aux Encd B/U	682R300G03	C	5007

[^0]| DESCRIPTION | ASSEMBLY NO. | REV. | S/N |
| :---: | :---: | :---: | :---: |
| Al Bd | 682R149G03 | E | 5007 |
| A2 Bd | 682R151G03 | E | 5007 |
| BBI | KG43 | | 026 |
| BB2 | KG43 | | 027 |
| BB3 | KG43 | | 028 |
| Ther. Blk. Kit | 661R564G03 | J | 5007 |
| GSSA/DOC | 640R790G03 | H | 5007 |
| GSSB | 633R906G01 | A | 5007 |
| PR1 | 688R461H01 | E | 040 |
| PR2 | 688R461H01 | E | 042 |
| PR3 | 688R461H01 | E | 043 |
| PR4 | 688R461H01 | E | 041 |
| Cable Assy | 9RA5255H09 | T | 006 |
| Cable Assy | 9RA5255H02 | T | 006 |
| Cable Assy | 9RA5255H03 | T | 007 |
| Cable Assy | 9RA5255H04 | T | 006 |
| Cable Assy | 9RA5255H10 | T | 003A |
| Cable Assy | 9RA5255H07 | T | 006 |
| Cable Assy | 9RA5255H06 | T | 501 |
| Cable Assy | 9RA8118G01 | F | - |
| Coax Assy | 644R327G01 | B | - |
| Coax Assy | 644R327G02 | B | - |
| Coax Assy | 644R327G03 | B | - |
| Coax Assy | 644R328G01 | C | - |
| Coax Assy | 644R328G02 | C | - |
| Coax Assy | 644R328G03 | C | - |
| Coax Assy | 644R328G04 | C | - |

$$
1-12
$$

DESCRIPTION	ASSEMBLY NO.	REV.	S/N
Coax Assy	644R328G05	C	-
Coax Cable	644R328G06	C	-
Coax Assy	644R329G01	c	-
Coax Assy	644R329G02	c	-
Coax Assy	644R329G03	c	-
Coax Assy	644R329G04	c	-
Coax Assy	644R329G05	c	-
Coax Assy	644R329G06	C	-
Coax Assy	644R329G07	C	-
Coax Assy	644R329G08	C	-
SPS	651R390G01	AC	5007
Matrix	$651 R 342 G 03$	AV	-
R/B	644R665G04	AE	5012
Matrix	644R081G03	L	-
Al Bd	640R618G03	F	5014
A2 Bd	640R518G02	P	5013
A3 Bd	640R520G03	P	5013
R/B	644R665G04	AE	5013
Matrix	644R081G03	L	-
Al Bd	640R618G03	F	5014
A2 Bd	640R518G03	P	5014
A3 Bd	640R520G03	P	5014
CU 1	640R612G02	J	5013
CU 1	640R612G02	\checkmark	5014
CU2	640R614G02	J	5012
CU 2	640R614G02	K	5013
AU 1	640R608G02	D	5013

DESCRIPTION	ASSEMBLY NO.	REV.	S/N
AU 1	640R608G02	D	5014
AU 2	640R610G02	D	5012
AU 2	640R610G02	D	5013
MCIX	640R560G03	L	5014
MC1X	640R560G03	L	5015
MC2X	640R562G03	U	5014
MC2X	640R562G03	U	5015
ROM	640R530G03	T	5012
ROM	640R530G03	T	5013
Core	644R910H03	K	013
Core	644R910H03	K	014
SDS2	640R442G03	T	5012
SDS2	640R442G03	N	5013
SDS3	640R444G03	N	5012
SDS3	640R444603	N	5013
SDS4	640R446G03	T	5012
SDS 4	640R446G03	T	5013
SDS5	640R498G03	p	5012
SDS5	640R498G03	P	5013
CLSD	640R458G03	AD	5012
CLSD	640R458G03	AD	5013
SDSIX	640R660G04	AP	5012
SDSIX	640R660G04	AP	5013
FC-1	640R450G03	AA	5012
FC-1	640R450G03	AA	5013
FC-2	640R454G03	V	5012
FC-2	640R454G03	v	5013

DESCRIPTION	ASSEMBLY NO.	REV.	S/N
FC-3	640R456G03	Y	5012
FC-3	640R456G03	Y	5013
SDF-1	640R474G03	AH	5012
SDF-1	640R474G03	AH	5013
SDF-2	640R476G03	AH	5012
SDF-2	640R476G03	AH	5013
SDF-3X	640R540G03	H	5012
SDF-3X	640R540G03	H	5013
SDF-4X	640R542G03	H	5012
SDF-4X	640R542G03	H	5013
SDF-5X	640R544G03	N	5012
SDF-5X	640R544G03	N	5013
SDS-6	640R538G03	U	5012
SDS-6	640R538G03	U	5013
SDS-7	640R546G03	p	5012
SDS-7	640R546G03	P	5013
4B	640R412G03	P	5012
4 B	640R412G03	P	5013
7A	640R414G03	AB	5012
7A	640R414G03	AB	5013
7 B	640R416G04	AR	5012
7 B	640R416G04	AR	5013
1A	640R400G03	AK	5014
1 A	640R400G03	AK	5015
1B	640R402G03	$A D$	5012
1B	640R402G03	AD	5013
FBC	640R448G03	N	5012

DESCRIPTION	ASSEMBLY NO.	REV.	S/N
FBC	640R448G03	N	5013
RAM	640R558G03	L	5025
RAM	640R558G03	L	5026
RAM	640R558G03	L	5027
RAM	640R558G03	L	5028
2A	640R488G03	Y	5012
2 A	640R488G03	Y	5013
2B	640R410G03	W	5012
2B	640R410G03	W	5013
3 A	640R404G03	Y	5012
3 A	640R404G03	Y	5013
10x	640R572G03	J	5012
10X	640R572G03	J	5013
CLCL	640R406G03	AD	5012
CLCL	640R406G03	AD	5013
WF-1X	640R566G03	P	5012
WF-1X	640R566G03	P	5013
WF-2	640R432G03	Y	5012
WF-2	640R432G03	Y	5013
WF-3	640R622G02	E	5012
WF-3	640R622G02	E	5013
WF-4	640R436G04	L	5012
WF-4	640R436G04	L	5013
WF-5	640R438G03	W	5012
WF-5	640R438G03	W	5013
9 A	640R420G03	AE	5013
9A	640R420G03	AE	5014

DESCRIPTION	ASSEMBLY NO.	REV	S/N
9BX	640R586G04	F	5013
9BX	640R586G04	F	5014
9CX	640R570G03	N	5013
9CX	640R570G03	N	5014
WF-6	640R568G03	H	5013
WF-6	640R568G03	H	5014
OSU	640R960G03	Y	5007
Matrix	522R783G02	Y	5007
Al	640R522G03	T	5007
A2	640R524G03	N	5007
Bottom	644R047G03	T	5007
Top	644R046G02	P	5007
SPU	758R040G01	L	5007
Matrix	640R927G02	v	-
SSP-8	640R552G03	E	5014
SSP-8	640R552G03	E	5015
RTD-1	640R508G03	AH	5012
RTD-1	640R508G03	AH	5013
RTD-2	640R510G03	AP	5012
RTD-2	640R510G03	AP	5013
RTD-3	640R512G03	K	5012
RTD-3	640R512G03	K	5013
RTD-4	640R526G03	N	5013
RTD-4	640R526G03	N	5014
RTD-5	640R514G03	R	5012
RTD-5	640R514G03	R	5013
SSP-1X	640R550G03	J	5012

DESCRIPTION	ASSEMBLY NO.	REV.	S/N
SSP-1X	640R550G03	J	5013
SSP-2	640R462G03	v	5012
SSP-2	640R462G03	v	5013
SSP-3	640R464G03	U	5012
SSP-3	640R464G03	U	5013
SSP-4	640R466G03	M	5012
SSP-4	640R466G03	M	5013
SSP-5	640R468G03	P	5012
SSP-5	640R468G03	P	5013
SSP-6	640R470G03	R	5012
SSP-6	640R470G03	R	5013
SSP-7	640R472G03	v	5012
SSP-7	640R472G03	V	5013
SSP-9	640R554G03	J	5013
SSP-9	640R554G03	J	5014
PSU	758R050G02	Y	5007
Matrix	640R620G01	F	0004
RFI Plate	690R891G01	A	5007
Reg Assy	$682 R 089603$	L	5004
Misc Bd	644R302G03	R	5007
T-Chan CG	688R483G03	G	5007
T-Left	688R485G03	F	5007
T-Rgt	688R487G03	G	5007
T-Chan BU	688R489G03	F	5007
T-Ana Fil	688R491G03	H	5012
T-Ana Fil	688R491G03	H	5013
L-Ana Fil	688R493G03	G	5012

1-18

DESCRIPTION	ASSEMBLY NO.	REV.	S/N
L-Ana Fil	688R493G03	G	5013
PSU TRA BLK	640R998G03	H	5013
PSU TRA BLK	640R998G03	H	5014
DME	688R481G03	G	5013
DME	688R481G03	G	5014
IMC	644R864G03	E	5007
Relay-1	688R501G03	E	5007
+5V	644R078G03	P	5007
Relay-2	688R502G03	0	5007
+12VDA	688R499G03	D	5013
+12VDA	688R499G03	D	5014
Dual ENPA	640R616G02	J	5007
Relay-3	688R503G03	c	5007
-12V	644R069G03	N	5007
Relay-5	688R505G03	C	5007
Relay-4	688R504G03	C	5007
$+12 \mathrm{~V} \mathrm{Vm}$	688R500G03	C	5007
MC	688R495G03	F	5013
MC	688R495G03	F	5014
CPH	688R497G03	D	5007
Wire Tab	318R249	N	-
Enable	682R381G03	D	5007

1.5 Thermal Vacuum Profiles

The OLS \#12 AVE underwent a series of Thermal Vacuum Tests. The profiles on the next pages represent the history of pumpdowns, SSS temperature and M1 temperatures experienced by the OLS \#12 AVE.

OLS \#12 THERMAL VACUUM PROFILE

0

$\underset{+}{\mathrm{N}}$
운
MI TEMP

1.6 Test History Calendar

The test history calendar is a capsule look at the day-to-day progress of the OLS \#12 AVE throughout its testing period at WEC.

UNIT ols\#12

1-33
\square

2.0 DEVELOPMENT SPECIFICATION REQUIREMENTS

2.1 Spectra (3.2.1.1.1.1, 3.1.1.1.2, 3.1.1.1.3)

The original OLS \#12 Channel spectral responses were calculated by computer programs (GAINSET for L Channel and TGAIN for T channel) utilizing vendor spectral response data for the detectors, mirror and lens transmissivities/ reflectivities, and solar \& lunar spectral radiance.

Since the original publication of OLS \#12 spectral response, more current data has become available for HRD and PMT spectral response. The HRD total spectral response has been recalculated using average telescope data for OLS \#13 thru OLS \#16, measured data for the OLS 16 relay optics and a typical HRD detector response.

The PMT total spectral response was re-calculated using replacement PMT (S/N 16) from OLS 14, measured OLS \#16 ORA and OLS \#16 telescope data. This total system PMT response, which is out of spec between 500 and 530 nm , is the one used to report the degree of spec compliance. The worst case point is at 520 nm , where the PMT response exceeds the specified maximum by 8% of the maximum response. The out-of-spec region is relatively small, and the increased response in the 500 nm region will have no significant effect on the night time visible imagery.

The OLS \#12 T channel and L Day spectral responses are within specification.

ATTACHMENTS: OLS \#12 HRD Channel Spectral Response.
OLS \#12 PMT Channel Spectral Response.
OLS \#12 T Channel Spectral Response.

$$
2-3
$$

(3)

(3)

2-4

2.2 GEOMETRIC RESOLUTION

2.2.1 Fine Geometric Resolution - Infrared (3.2.1.1.2.1)

2.2.1.1 Baseline (Orbit Nominal)

The TF Surface Resolution Parameter (SRP) is within the development specification limits.

The VAX Computer programs calculate and plot the Fine Primary SRP, and the T Right \& Left Fallback modes. In addition, all Specification required modes are tabulated and presented. The designations on the graphs are defined as follows:

TFP T Fine Primary Electronics
TFB T Fine Backup (Redundant) Electronics
TSP T Smooth Primary Electronics
TSB T Smooth Backup Electronics

ATTACHMENTS: TF Curves SRP Orbit Nominal
TF SRP Tables Orbit Nominal

SYSTEM 12.,SRP TF NORMAL,SSS=5. . M1 = - 8 , ,DATE: 914

ORBIT
NOMINAL
$1 . \square$

SYSTEM 12.,SRP TF L. FBAK,SSS=5 . .,M1=-8 , DRTE: 914

ORBIT
NOMINAL $X=F B N D R M A L S O S$

SYSTEM 12, SRP TF R FBAK, SSS $=5 \ldots, M 1=-8$, , DATE: 914

T. COMPLETE, SRP (NM)

	FLT. ND. =	2 ENV. =	SS5=	SDEGC M1 =	-BDEGC DATE:	914
SEG	SUR. DIST. (NM)	TFP	TFB	TSP	TSB	
LFT	-750.	0.725	0.722	1. 732	1. 675	
MID	-750.	1. 253	0.000	1. 828	1. 782	
RGT	-750.	0. 995	0.989	1.766	1.713	
LFT	0.	0.000	0. 000	0. 000	0.000	
MID	0.	0. 000	0. 000	0. 000	0. 000	
RGT	0.	0. 000	0. 000	0. 000	0. 000	
LFT	-431.	0.397	0. 391	1. 461	1. 410	
MID	-431.	0. 631	0.000	1. 488	1. 439	
RGT	-431.	0. 485	0.479	1. 461	1. 410	
LFT	-398.	0. 379	0. 373	1. 408	1. 359	
MID	-398.	0. 614	0. 611	1. 429	1. 382	
RGT	-398.	0. 454	0.447	1. 406	1. 357	
LFT	0.	0.000	0.000	0. 000	0. 000	
MID	0.	0. 000	0.000	0.000	0. 000	
RGT	0.	0. 000	0.000	0.000	0.000	
LFT	0.	0. 248	O. 245	0.968	0. 935	
MID	0.	0. 255	0. 252	0.96日	0.935	
RGT	0.	0. 236	0. 234	0.766	0.932	
LFT	0.	0. 000	0. 000	0.000	0. 000	
MID	0.	0.000	0.000	0. 000	0.000	
RGT	0.	0.000	0.000	0.000	0.000	
LFT	398.	0. 489	0. 484	1. 411	1. 363	
MID	398.	0. 568	0. 565	1. 420	1. 372	
RGT	398.	0. 355	0. 351	1. 397	1. 348	
LFT	431.	0. 521	0. 515	1. 466	1. 415	
MID	431.	0. 573	0.000	1. 479	1. 430	
RGT	431.	0. 377	0. 373	1. 455	1. 405	
LFT	0.	0.000	0.000	0.000	0.000	
MID	0.	0. 000	0.000	0.000	0.000	
RGT	0.	0. 000	0.000	0.000	0.000	
LFT	757.	1. 061	1. 054	1. 785	1. 735	
MID	757.	1. 449	0.000	1.900	1. 860	
RGT	757.	0. 695	0.692	1.715	1. 658	

SEG	SUR. DIST. (NM)	TFP	TFB	TSP	TSB
LFT	-750.	0. 845	0. 841	0.770	0.745
MID	-750.	0.000	O. 000	0.813	0.793
RGT	-750.	0.753	0.749	0.785	0.762
LFT	0.	0.000	0.000	0. 000	0.000
MID	0.	0. 000	0.000	0.000	0.000
RGT	0.	0. 000	0.000	0. 000	0.000
LFT	-431.	0. 900	0. 885	0. 912	0. 881
MID	-431.	0.000	0.000	0.929	0. 899
RGT	-431.	0. 854	0.843	0.912	0.881
LFT	-398.	0. 903	0. 888	0.918	0. 886
MID	-398.	0. 934	0.930	0. 932	0.901
RGT	-398.	0. 867	0. 855	0.916	0.885
LFT	0.	0. 000	0.000	0.000	0.000
MID	0.	0. 000	0.000	0.000	0.000
RGT	0.	0.000	0.000	0.000	0. 000
LFT	0.	0.902	0.892	0.922	0. 890
MID	0.	0.882	0. 871	0.922	0.890
RGT	0.	0.857	0.852	0.920	0.888
EFT	0.	0. 000	0.000	0.000	0.000
MID	0.	0. 000	0.000	0.000	0.000
RGT	0.	0. 000	0.000	0. 000	0.000
LFT	398.	0.936	0.925	0.920	0. 889
MID	398.	0. 865	0.860	0.926	0. 894
RGT	398.	0.846	0.838	0. 911	0. 879
LFT	431.	0.916	0.906	0.915	0. 884
MID	431.	0. 000	0.000	0. 924	0. 893
RGT	431.	0. 854	0. 844	0.909	Q. 877
LFT	0.	0. 000	0.000	0. 000	0. 000
MID	0.	0. 000	0.000	0. 000	0.000
RGT	0.	0. 000	0.000	0. 000	0.000
LFT	757.	0. 790	0.785	0. 790	0.768
MID	757.	0. 000	0. 000	0. 840	0. 823
RGT	757.	0. 797	0.793	0. 759	0. 734

TF, LEFT, PRIMARY

FLT. NO. $=12$. $=$	4 SSS=	$M 1=-8 D E G C$	DATE:
SUR. DIST. (NM)	SRP	ACTUAL (NM)	SRP RATII	
-750.		0. 725	0. 845	
0.		0.000	0.000	
-431.		0. 397	0. 900	
-398.		0.379	0.903	
0.		0.000	0.000	
0.		0. 248	0.902	
0.		0. 000	0.000	
398.		0. 489	0.936	
431.		0. 521	0.916	
0.		0.000	0.000	
757.		1. 061	0.790	

TF, LEFT, BACKUP

F゙LT. NO. $=12$. $=$	4 SSS= 5	M1 = -8DEGC	DATE:
SUR. DIST. (NM)	SRP	ACTUAL (NM)	SRP RATID	
-750.		0. 722	0. 841	
0.		0.000	0.000	
-431.		0. 391	0. 885	
-399.		0. 373	0. 888	
0.		0. 000	0. 000	
0.		0. 245	0. 892	
0.		0. 000	0. 000	
398.		0. 484	0. 925	
431.		0. 515	0. 906	
0.		0. 000	0.000	
757.		1. 054	0.785	

TF, RIGHT, PRIMARY

FLT. ND. $=12$ ENV. $=4$ 5SS $=5 D E G C$ MI = -BDEGC DATE: 914
SUR. DIST. (NM) SRP ACTUAL (NM) SRP RATID

-750.	0.995	0.753
0.	0.000	0.000
-431.	0.485	0.854
-398.	0.454	0.869
0.	0.000	0.000
0.	0.236	0.857
0.	0.000	0.000
398.	0.355	0.846
431.	0.377	0.854
0.	0.000	0.000
757.	0.695	0.797

TF RIGHT, BACKUP
FLT. ND. $=12$ ENV. $=4$ SSS= 5DEGC M1 = -8DEGC DATE: 914
SUR.DIST. (NM) SRP ACTUAL(NM) SRP RATIO
-750.
0.999
0.749
0.
0.000
0.000
-431.
0.479
0.843 -39日.
0.447
0. 855
0.
0.000
0. 000
0.
0. 234
0.852
0.
0.000
0.000
398.
0. 351
0. 838
431.
0. 373
0. 844
0.
0.000
0.000
757.
0. 692
0.793

2.2.1.2 Acceptance - Vibration

OLS \#12 underwent acceptance level SSS vibration per DMSS-OLS300 with cone cooler S/N 024 on May 23, 1991. The pre-to-post vibration SRP performance is shown on the attached curves and tables. ATTACHMENTS: TF SRP Curves Previbration.

TF SRP Tables Previbration.
TF SRP Curves Postvibration.
TF SRP Tables Postvibration.

SYSTEM 12.,SRP. TF NORMAL,SSS=5 . .,M1 = -8.,DATE: 707.

SYSTEM 12,,SRP. TF. L. FBAK,SSS=5 . ,M1=-8.,DATE:707.

SYSTEM 12 , SRP TF R FBAK,SSS=5 $\ldots, M 1=-8$, DATE: 707

T, COMPLETE, SRP (NM)

	FLT. ND. =	ENV. =	55S=	5DEGC M1=	-BDEGC DA
SEG	SUR. DIST. (NM)	TFP	TFB	TSP	TSB
LFT	-750.	0.716	0. 708	1. 730	1. 665
MID	-750.	1. 297	0. 000	1.846	1.793
RGT	-750.	0. 987	0. 983	1.764	1.703
LFT	-600.	0. 544	0. 534	1. 715	1. 648
MID	-600.	1. 008	0.000	1.786	1.726
RGT	-600.	0. 716	0.708	1.725	1.660
LFT	-431.	0. 391	0. 387	1. 459	1. 403
MID	-431.	0.621	0.000	1. 489	1. 433
RGT	-431.	0.476	0. 469	1. 463	1. 407
LFT	-398.	0. 378	0. 374	1. 406	1. 351
MID	-398.	0.608	0.602	1. 429	1. 375
RGT	-398.	0. 445	0.438	1.410	1. 356
LFT	-200.	0. 280	0. 278	1. 100	1. 057
MID	-200.	0. 346	0. 341	1. 105	1.063
RET	-200.	0. 296	0. 293	1. 102	1. 059
LFT	0.	0. 253	0. 251	0. 971	0.933
MID	0.	0. 253	0. 251	0. 971	0.934
RGT	0.	0. 232	0. 232	0. 968	0.931
LFT	200.	0. 322	0. 317	1. 104	1. 061
MID	200.	0. 321	0.316	1. 106	1. 063
RGT	200.	0. 263	0. 263	1.096	1. 054
LFT	398.	0.477	0. 469	1. 408	1. 354
MID	398.	0.556	0. 549	1. 419	1. 365
RGT	398.	0.345	0. 344	1. 398	1. 344
LFT	431.	0.503	0. 495	1. 465	1. 408
MID	431.	0. 561	0. 000	1. 48 ?	1. 426
RGT	431.	0. 367	0. 365	1. 456	1. 399
LFT	601.	0.732	0. 724	1.726	1. 661
MID	601.	0.924	0. 000	1. 766	1. 704
RGT	601.	0.500	0. 492	1. 704	1.639
LFT	757.	1. 037	1. 035	1.780	1. 722
MID	757.	1. 424	0. 000	1. 894	1. 845
RGT	757.	0.686	0.678	1.717	1.653

SEG	SUR. DIST. (NM)	TFP	TFB	TSP	TSB
LFT	-750.	0.934	0.825	0.769	0.740
MID	-750.	0.000	0.000	0.921	0.797
RGT	-750.	0.747	0.744	0.784	0.757
LFT	-600.	0.897	0.882	0.971	0.837
MID	-600.	0.000	0.000	0.907	0.876
RGT	-600.	0.805	0.797	0.876	0.843
LFT	-431.	0.886	0.877	0.911	0.976
MID	-431.	0.000	0.000	0.930	0.895
RGT	-431.	0.838	0.826	0.914	0.879
LFT	-398.	0.901	0.891	0.917	0.881
MID	-398.	0.926	0.917	0.932	0.897
RGT	-398.	0.851	0.838	0.920	0.884
LFT	-200.	0.894	0.889	0.917	0.882
MID	-200.	0.946	0.931	0.922	0.886
RGT	-200.	0.870	0.862	0.919	0.883
LFT	0.	0.921	0.914	0.925	0.889
MID	0.	0.873	0.866	0.925	0.889
RGT	0.	0.845	0.844	0.922	0.886
LFT	200.	0.946	0.932	0.921	0.885
MID	200.	0.877	0.864	0.922	0.886
RGT	200.	0.839	0.838	0.914	0.878
LFT	398.	0.912	0.898	0.918	0.883
MID	398.	0.847	0.837	0.925	0.890
RGT	398.	0.823	0.820	0.912	0.876
LFT	431.	0.884	0.871	0.915	0.879
MID	431.	0.000	0.000	0.926	0.891
RGT	431.	0.831	0.827	0.909	0.874
LFT	601.	0.821	0.813	0.876	0.843
MID	601.	0.000	0.000	0.896	0.865
RGT	601.	0.823	0.811	0.865	0.831
LFT	757.	0.774	0.771	0.788	0.762
MID	757.	0.000	0.800	0.838	0.816
RGT	757.	0.787	0.777	0.760	0.731

TF, LEFT, PRIMARY

FLT. ND. $=12$ ENV. $=4$ 5S5= 5DEGC M1=-8DEGC DATE: 707 SUR.DIST. (NM) SRP ACTUAL (NM) SRP RATID

-750.	0.716	0.834
-600.	0.544	0.897
-431.	0.391	0.886
-398.	0.378	0.901
-200.	0.280	0.894
0.	0.253	0.921
200.	0.322	0.946
398.	0.477	0.912
431.	0.503	0.884
601.	0.732	0.821
757.	1.039	0.774

TF, LEFT, BACKUP
FLT. ND. $=12$ ENV. $=4$ SSS= 5DEGC M1=-BDEGC DATE: 707
SUR.DIST. (NM) SRP ACTUAL(NM) SRP RATID

-750.	0.708	0.825
-600.	0.534	0.882
-431.	0.387	0.877
-398.	0.374	0.891
-200.	0.278	0.889
0.	0.251	0.914
200.	0.317	0.932
398.	0.469	0.898
431.	0.495	0.871
601.	0.724	0.813
757.	1.035	0.771

TF, RIGHT, PRIMARY
FLT. NO. $=12$ ENV. $=4$ SSS= SDEGC M1 = -BDEGC DATE: 707 SUR. DIST. (NM) SRP ACTUAL(NM) SRP RATIO

-750.	0.987	0.747
-600.	0.716	0.805
-431.	0.476	0.838
-398.	0.445	0.851
-200.	0.296	0.870
0.	0.232	0.845
200.	0.263	0.839
398.	0.345	0.823
431.	0.367	0.831
601.	0.500	0.823
757.	0.686	0.787

TF RIGHT, BACKUP
FLT. ND. $=12$ ENU. $=4$ 5SS= 5DEGC M1 = -BDEGC DATE: 707
SUR.DIST. (NM) SRP ACTUAL(NM) SRP RATIO

-750.	0.983	0.744
-600.	0.708	0.797
-431.	0.469	0.826
-398.	0.438	0.838
-200.	0.293	0.862
0.	0.232	0.844
200.	0.263	0.838
398.	0.344	0.820
431.	0.365	0.827
601.	0.492	0.811
757.	0.678	0.777

SYSTEM 12 ,SRP TF R FBAK,SSS=5 , M1 = -8, DRTE: 914

SYSTEM 12,SRP TF NORMAL,SSS=5 , M1=-8 ,DATE:914

POST
VIB
$\stackrel{\square}{-}$

N
0
0
0

SYSTEM 12,SRP TF L FBAK,SSS=5 , M1 = - 8 , DATE: 914

POST
VIB

T, COMPLETE, SRP (NM)

T, COMPLETE, SRP RATIO

SEG	SUR. DIST. (NM)	TFP	TFB	TSP	TSB
LFT	-750.	0.845	0.841	0.770	0.745
MID	-750.	0.000	0.000	0.813	0.793
RGT	-750.	0.753	0.749	0.785	0.762
LFT	0.	0.000	0.000	0.000	0.000
MID	0.	0.000	0.000	0.000	0.000
RGT	0.	0.000	0.000	0.000	0.000
LFT	-431.	0.900	0.885	0.912	0.881
MID	-431.	0.000	0.000	0.929	0.899
RGT	-431.	0.854	0.843	0.912	0.881
LFT	-398.	0.903	$0.88 日$	0.918	0.886
MID	-398.	0.934	0.930	0.932	0.901
RGT	-398.	0.869	0.855	0.916	0.885
LFT	0.	0.000	0.000	0.000	0.000
MID	0.	0.000	0.000	0.000	0.000
RGT	0.	0.000	0.000	0.000	0.000
LFT	0.	0.902	0.892	0.922	0.890
MID	0.	0.882	0.971	0.922	0.890
RGT	0.	0.857	0.852	0.920	0.888
LFT	0.	0.000	0.000	0.000	0.000
MID	0.	0.000	0.000	0.000	0.000
RGT	0.	0.000	0.000	0.000	0.000
LFT	398.	0.936	0.925	0.920	0.889
MID	398.	0.865	0.860	0.926	0.894
RGT	398.	0.846	0.838	0.911	0.879
LFT	431.	0.916	0.906	0.915	0.884
MID	431.	0.000	0.000	0.924	0.893
RGT	431.	0.854	0.844	0.909	0.877
LFT	0.	0.000	0.000	0.000	0.000
MID	0.	0.000	0.000	0.000	0.000
RGT	0.	0.000	0.000	0.000	0.000
LFT	757.	0.790	0.785	0.790	0.768
MID	757.	0.000	0.000	0.840	0.823
RGT	757.	0.797	0.793	0.759	0.734

TF, LEFT, PRIMARY

FLT. NO. $=12$ ENV. $=4$ SSS= SDEGC M1 = \rightarrow BDEGC DATE: 914
SUR. DIST. (NM) SRP ACTUAL(NM) SRP RATIO

-750.	0.725	0.845
0.	0.000	0.000
-431.	0.397	0.900
-398.	0.379	0.903
0.	0.000	0.000
0.	0.248	0.902
0.	0.000	0.000
398.	0.489	0.736
431.	0.521	0.916
0.	0.000	0.000
757.	1.061	0.790

TF, LEFT, BACKUP
FLT. ND. $=12$ ENV. $=4$ SSS= SDEGC M1 = -EDEGC DATE: 914
SUR. DIST. (NM) SRP ACTUAL (NM) SRP RATIロ

-750.	0.722	0.841
0.	0.000	0.000
-431.	0.391	0.885
-398.	0.373	0.898
0.	0.000	0.000
0.	0.245	0.892
0.	0.000	0.000
398.	0.484	0.925
431.	0.515	0.904
0.	0.000	0.000
757.	1.054	0.795

$2-26$

TH, RI GUT, PRIMARY
FLT. NO. $=12$ END. $=4$ SSS= SDEGC M1=-EDEGC DATE: 914 SUR. DIST. (NM) SRP ACTUAL (NM) SP RATIO

-750.	0.995	0.753
0.	0.000	0.000
-431.	0.485	0.854
-398.	0.454	0.869
0.	0.000	0.000
0.	0.336	0.857
0.	0.000	0.000
398.	0.355	0.846
431.	0.377	0.854
0.	0.000	0.000
757.	0.695	0.797

TH RIGHT, BACKUP

FLT. ND. $=12$ ENS. $=4$ SSS $=5 D E G C$ MI = -BDEGC DATE: 914
SUR. DIST. (NM) SRP ACTUAL (NM) SP RATIO

-750.	0.989	0.749
0.	0.000	0.000
-431.	0.479	0.843
-398.	0.447	0.855
0.	0.000	0.000
0.	0.234	0.852
0.	0.000	0.000
398.	0.351	0.838
431.	0.373	0.844
757.	0.000	0.000

2.2 Geometric Resolution (Cont'd)

2.2.1 Fine Geometric Resolution, Infrared (Cont'd) (3.2.1.1.2.1)

2.2.1.3 Acceptance - Thermal Vacuum

The attached TF SRP curves and tables demonstrate in-spec
performance at the thermal vacuum test limits. The Orbit Nominal SRP curves are contained in paragraph 2.2.1.1 and are not inciuded here.

ATTACHMENTS: TF SRP Curves Hot Limits
TF SRP Tables Hot Limits
TF SRP Curves Cold Limits
TF SRP Tables Cold Limits

SYSTEM 12,SRP TF NORMFL,SSS=7 , M1=12, DATE: 905

SYSTEM 12.,SRP TF L FBAK,SSS=7 ,M1=12,,DATE: 905

-		HOT
	-SPEC LIMIT	LIMIT
	0 =NORMAL SOS	

SYSTEM 12,SRP TF R FEAK, $\mathrm{SSS}=7 \quad, \mathrm{M1}=12$, DRTE: 905

	FLT. ND. $=$	ENV. =	Sss=		GC DATE:
SEG	SUR. DIST. (NM)	TFP	TFB	TSP	TSB
LFT	-750.	0. 771	0.767	1. 751	1.697
MID	-750.	1. 252	0. 000	1. 833	1. 789
RGT	-750.	1. 015	1. 016	1. 777	1. 727
- \bar{T}	0.	0. 000	0. 000	0. 000	0. 000
MID	0.	0. 000	0.000	0. 000	0.000
RGT	0.	0. 000	0. 000	0. 000	0.000
LFT	-431.	0. 427	0. 424	1. 466	1. 417
MID	-431.	0. 642	0. 000	1. 493	1. 446
RGT	-431.	0. 491	0. 489	1. 469	1. 420
LFT	-398.	0. 399	0. 396	1. 413	1. 366
MID	-398.	0. 624	0. 622	1. 433	1. 388
RGT	-398.	0. 464	0. 462	1. 413	1. 365
LFT	0.	0. 000	0. 000	0. 000	0. 000
MID	0.	0. 000	0.000	0. 000	0. 000
RGT	0.	0.000	0.000	0. 000	0. 000
LFT	0.	0. 265	0. 263	0. 971	0.938
MID	0.	0. 260	0. 258	0. 971	0.938
RGT	0.	0. 238	0.236	0.968	0.935
LFT	0.	0. 000	0. 000	0.000	0. 000
MID	0.	0. 000	0. 000	0.000	0. 000
RGT	0.	0. 000	0. 000	0.000	0. 000
LFT	398.	0. 491	0. 489	1. 409	1. 362
MID	398.	0. 567	0. 563	1. 421	1. 374
RGT	398.	0. 367	0. 363	1. 399	1. 352
LFT	431.	0. 521	0. 518	1. 468	1. 419
MID	431.	0. 579	0.000	1. 483	1. 435
RGT	431.	0. 394	0.390	1.458	1. 409
LFT	0.	0. 000	0.000	0. 000	0. 000
MID	0.	0.000	0. 000	0. 000	O. 000
RGT	0.	0. 000	0. 000	0. 000	0.000 1.744
LFT	757.	1. 067	1. 069	1.792	1.744 1.876
MID	757.	1. 475	0. 000	1. 916	1. 876
RGT	757.	0. 729	0. 724	1. 728	1.673

T, COMPLETE, SRP RATID

SEG	SUR. DIST. (NM)	TFP	TFB	TSP	T5B
LFT	-750.	0. 897	0. 893	0. 779	0. 755
MID	-750.	0. 000	0. 000	0. 815	0. 795
RGT	-750.	0.768	0. 769	0.790	0. 768
LFT	0.	0.000	0.000	0.000	0. 000
MID	0.	0. 000	0.000	0. 000	0. 000
RGT	0.	0.000	0. 000	0.000	0. 000
LFT	-431.	0.766	0.960	0.916	0. 885
MID	-431.	0.000	0. 000	0.932	0. 903
RGT	-431.	0. 865	0. 861	0.918	0. 887
LFT	-398.	0. 952	0.944	0.922	0. 890
MID	-39日.	0. 750	0.946	0.934	0. 905
RGT	-398.	0. 887	0.883	0.921	0. 890
LFT	0.	0. 000	0.000	0.000	0. 000
MID	0.	0. 000	0.000	0.000	0. 000
RGT	0.	0. 000	0. 000	0.000	0. 000
LFT	0.	0.965	0.956	0.924	0. 893
MID	0.	0. 899	0. 890	0.925	0. 894
RGT	0.	0. 865	0.858	0.922	0. 891
LFT	0.	0. 000	0. 000	0.000	0.000
MID	0.	0. 000	0.000	0.000	0. 000
RGT	0.	0. 000	0.000	0.000	0.000
LFT	398.	0.940	0.935	0.919	0. 888
MID	398.	0. 863	0. 958	0.927	0.896
RGT	398.	0. 176	0.866	0.912	0. 882
LFT	431.	0. 917	0.911	0.917	0. 886
MID	431.	0. 000	0.000	0.926	0. 896
RGT	431.	0. 892	0. 883	0.910	0. 880
LFT	0.	0. 000	0.000	0.000	0. 000
MID	0.	0. 000	0.000	0.000	0. 000
RGT	0.	0. 000	0.000	0.000	0. 000
LFT	757.	0. 795	0.796	0.793	0. 772
MID	757.	0. 000	0.000	0. 848	0. 830
RGT	757.	0. 835	0.830	0.764	0. 740

"F, LEFT, PRIMARY

FLT. NQ. $=12$ ENV. $=4$ SSS= 7DEGC M1 = 12DEGC DATE: 905 SUR. DIST. (NM) SRP ACTUAL(NM) SRP RATID
-750.
0.
-431.
-398.
0. 771
0.000
0. 427
0. 000
0. 399

- 906

0. 000
1.
2. 265
0.000
0.491
3.
4. 521
5. 000
6. 952
0.000
0.965
7. 000
0.940
8.
9. 067
0.917
0.000
10.
11. 795

TF, LEFT, BACKUP
FLT. NO. $=12$ ENV. $=4$ 5S5= 7DEGC MI= 12DEGC DATE: 905
SUR. DIST. (NM) SRP ACTUAL(NM) SRP RATID

-750.	0.767	0.893
0.	0.000	0.000
-431.	0.424	0.960
-398.	0.396	0.944
0.	0.000	0.000
0.	0.263	0.956
0.	0.000	0.000
398.	0.489	0.935
431.	0.518	0.911
0.	0.000	0.000
757.	1.069	0.796

TF, RIGHT, PRIMARY

FLT. NO. $=12$ ENV. $=4$ SSS= 7DEGC M1= IEDEGC DATE: 905
SUR. DIST. (NM) SRP ACTUAL (NM) SRP RATIU

-750.	1.015	0.768
0.	0.000	0.000
-431.	0.491	0.865
-398.	0.464	0.887
0.	0.000	0.000
0.	0.238	0.865
0.	0.000	0.000
398.	0.367	0.876
431.	0.394	0.892
757.	0.000	0.000
	0.728	0.835

TF RIGHT, BACKUP

FLT. NO. $=12$	ENV. =	$4.555=7$	7DEGC	M1 $=$	= 12DEGC	DATE:	905
SUR. DIST. (NM)	SRP	ACTUAL (NM)) S	SRP R	RATID		
-750.		1.016		0.7	769		
0.		0.000		0.	000		
-431.		0.489		0.	861		
-398.		0.462		O.	883		
0.		0. 000		0.0	000		
0.		0. 236		0. 8	858		
0.		0. 000		0.0	000		
398.		0. 363		0.8	366		
431.		0. 390		0. E	883		
0.		0.000		0.0	000		
757.		0. 724		O. 8	330		

SYSTEM 12.,SRP TF NORMPL,SSS=3. . M1 = -8, DRTE: 908

SYSTEM 12 ,,SRP. TF L FBAK,SSS=3. ,M1=-8, DATE: 908

1 : $\quad \vdots \quad \vdots$

SYSTEM 12,SRP TF R FBAK,SSS=3 , M1 = -8, DATE: 9 D8

T, COMPLETE, SRP (NM)

T, COMPLETE, SRP RATID

SEG	SUR. DIST. (NM)	TFP	TFB	TSP	T5B
LFT	-750.	0.798	0.790	0.762	0. 731
MID	-750.	0. 000	0.000	0.809	0. 784
RGT	-750.	0. 734	0. 728	0.779	0. 751
LFT	0.	0. 000	0. 000	0.000	0.000
MID	0.	0. 000	0.000	0. 000	0.000
Ret	0.	0.000	0. 000	0.000	0. 000
LFT	-431.	0.857	0. 848	0. 907	0. 871
MID	-431.	0.000	0. 000	0.925	0. 889
RGT	-431.	0.806	0. 801	0.909	0. 872
LFT	-398.	0.862	0. 854	0.912	0. 875
MID	-398.	0. 918	0. 909	0.928	0. 892
RGT	-398.	0. 838	0. 833	0.917	0. 880
LFT	0.	0. 000	0. 000	0. 000	0. 000
MID	0.	0. 000	0.000	0.000	0. 000
RGT	0.	0.000	0. 000	0. 000	0. 000
LFT	0.	0. 943	0. 934	0.926	0. 889
MID	0.	0. 861	0. 852	0.922	0. 885
RGT	0.	0. 841	0. 835	0. 919	0. 888
LFT	0.	0. 000	0.000	0. 000	0.000
MID	0.	0. 000	0.000	0. 000	0. 000
RGT	0.	0. 000	0. 000	0. 000	0. 000
LFT	398.	0.910	0. 903	0.917	0. 880
MID	398.	0. 847	0. 839	0.923	0. 886
RGT	398.	0. 841	0. 833	0.909	0.873
LFT	431.	0.901	0. 894	0.912	0.876
MID	431.	0.000	0. 000	0. 922	0. 886
RGT	431.	0. 822	0. 813	0.906	0. 869
LFT	0.	0. 000	0. 000	0. 000	0. 000
MID	0.	0. 000	0. 000	0.000	0.000
RGT	0.	0. 000	0.000	0.000	0.000
LFT	757.	0. 774	0.768	0.785	0. 759
MID	757.	0. 000	0. 000	0.837	0.816
RGT	757.	0. 778	0. 769	0. 755	0.725

TF, LEFT, PRIMARY

FLT. ND. $=12$ ENV. $=4$ SSS= 3DEGC M1 $=-$ BDEGC DATE: 908
SUR. DIST. (NM) SRP ACTUAL (NM) SRP RATIO

-750.	0.685	0.798
0.	0.000	0.000
-431.	0.378	0.857
-398.	0.362	0.862
0.	0.000	0.000
0.	0.259	0.943
0.	0.000	0.000
398.	0.476	0.910
431.	0.512	0.901
0.	0.000	0.000
757.	1.040	0.774

TF, LEFT, BACKUP
FLT. ND. $=12$ ENV. $=4$ SSS= 3DEGC M1 = -GDEGC DATE: 908
SUR.DIST. (NM) SRP ACTUAL(NM) SRP RATIU
-750.
0.
-431.
-398.
0.
0.
0.
398.
431.
0.
757.
0.678
0.790
0. 000
0. 375
0. 358
0.000
0. 257
0.000
0. 472
0. 508
0. 000

1. 032
2. 000
3. 848
4. 854
5. 000
0.934
6. 000
7. 903
0.894
0.000
0.768

TF,RIGHT, PRIMARY
FLT. ND. $=12$ ENV. $=4$ SSS= 3DEGC MI $=-$ BDEGC DATE: 908 SUR. DIST. (NM) SRP ACTUAL(NM) SRP RATID

-750.	0.769	0.734
0.	0.000	0.000
-431.	0.458	0.806
-398.	0.438	0.838
0.	0.000	0.000
0.	0.231	0.841
0.	0.000	0.000
398.	0.353	0.841
431.	0.363	0.822
0.	0.000	0.000
757.	0.678	0.778

TF RIGHT, BACKUP
FLT. NO. $=12$ ENV. $=4$ 5SS= 3DEGC M1 = -BDEGC DATE: $90 B$
SUR.DIST. (NM) SRP ACTUAL(NM) SRP RATIO

-750.	0.962	0.728
0.	0.000	0.000
-431.	0.455	0.801
-398.	0.436	0.833
0.	0.000	0.000
0.	0.230	0.835
0.	0.000	0.000
398.	0.349	0.833
431.	0.359	0.813
0.	0.000	0.000
757.	0.671	0.769

2.2 Geometric Resolution (Cont'd)

2.2.2 Fine Geometric Resolution - Daytime Visua] (3.2.1.1.2.1)
2.2.2.1 Baseline (Orbit Nominal)

The LF SRP is within the specification limits in both Primary and Redundant configurations.

ATTACHMENTS: LF SRP Curves Orbit Nominal
LF SRP Tables Orbit Nominal

SYSTEM 12.,SRP LF NORMAL,SSS=5 . .,M1=-8, , DATE:912

SYSTEM 12 ,,SRP LF FBRCK ,,SSS=5 . ,M1=--8, DATE:912

LF, DAY, NORMAL, PRIMARY

FLT. NO. $=12$ ENV. $=4$ SSS= 5DEGC M1 = -BDEGC DATE: 912
SUR.DIST. (NM) SRP ACTUAL(NM) SRP RATID

-800.	0.474	0.982
0.	0.000	0.000
-431.	0.304	0.933
-398.	0.396	0.980
0.	0.000	0.000
0.	0.330	0.957
0.	0.000	0.000
438.	0.398	0.987
0.	0.310	0.947
800.	0.000	0.000
	0.462	0.958

L_F, DAY, NDRMAL, BACKUP

FLT. ND. $=12$ ENV. $=4$ SSS= 5DEGC M1 = -BDEGC DATE: 912
SUR. DIST. (NM) SRP ACTUAL(NM) SRP RATID

-800.	0.474	0.981
0.	0.000	0.000
-431.	0.301	0.924
-398.	0.395	0.978
0.	0.000	0.000
0.	0.228	0.949
0.	0.000	0.000
$39 日$.	0.397	0.985
431.	0.306	0.939
0.	0.000	0.000
800.	0.462	0.956

LF, DAY, FALLBACK, PRIMARY

FLT. ND. $=12$ ENV. $=4$ SSS= 5DEGC M1 = -GDEGC DATE: 912
SUR.DIST. (NM) SRP ACTUAL(NM) SRP RATID

-787.	0.615	0.926
0.	0.000	0.000
-431.	0.332	0.950
-398.	0.316	0.951
0.	0.000	0.000
0.	0.205	0.938
0.	0.000	0.000
398.	0.322	0.969
431.	0.340	0.972
788	0.000	0.000
0.	0.635	0.954

LF, DAY, FALLBACK, BACKUP
FLT. NO. $=12$ ENV. $=4555=5 D E G C$ MI = -BDECC DATE: 912
SUR.DIST. (NM) SRP ACTUAL(NM) SRP RATID

-787.	0.614	0.925
0.	0.000	0.000
-431.	0.329	0.941
-398.	0.313	0.942
0.	0.000	0.000
0.	0.203	0.928
0.	0.000	0.000
398.	0.319	0.959
431.	0.337	0.963
0.	0.000	0.000
788.	0.634	0.953

2.2 Geometric Resolution (Cont'd)

2.2.2 Fine Geometric Resolution - Daytime Visual (Cont'd)
 (3.2.1.1.2.1)

2.2.2.2 Acceptance - Vibration

OLS \#12 underwent Acceptance-level SSS vibration on May 23, 1991. The Pre-to-Post Vibration SRP performance is within Specification requirements and is shown on the attached curves and tables. No changes in SRP performance occurred as a result of vibration.

ATTACHMENTS: LF SRP Curves Pre-Vibration
LF SRP Tables Pre-Vibration
LF SRP Curves Post-Vibration
LF SRP Tables Post-Vibration

SYSTEM 12 , SRP LF NORMFL, SSS= 23 , M1 = 24 , DRTE:527

LF, DAY, NORMAL, PRIMARY

LF: DAY, NORMAL, BACKUP
FLT. ND. $=12$ ENV. $=2$ SSS= 23DEGC M1=24DEGC DATE: 527
SUR.DIST. (NM) SRP ACTUAL (NM) SRP RATID

-800.	0.499	
0.	0.000	1.034
-431.	0.303	0.000
-398.	0.401	0.928
0.	0.000	0.993
0.	0.330	0.000
0.	0.000	0.960
398	0.407	0.000
431.	0.309	1.010
0.	0.000	0.947
800.	0.496	0.000
		1.027

SYSTEM . 12 ,,SRP LF NORMAL, SSS= 23 , M1 = 24 , DRTE: 814

LF, DAY, NDRMAL, PR IMARY
FLT. NO. $=12$ ENV. $=2$ SSS= 23DEGC M1= 24DEGC DATE: 814 SUR. DIST. (NM) SRP ACTUAL (NM) SRP RATID

-800.	0.493	1.022
0.	0.000	0.000
-431.	0.305	0.937
-398.	0.401	0.973
0.	0.000	0.000
0.	0.234	0.974
0.	0.000	0.000
398.	0.406	1.007
431.	0.310	0.950
0.	0.000	0.000
800	0.504	1.044

LF, DAY, NDRMAL, BACKUP
FLT. ND. $=12$ ENV. $=2$ SSS= 23DEGC MI = 24DEGC DATE: 814
SUR. DIST. (NM) SRP ACTUAL(NM) SRP RATIC
-800
0.494

1. 023
2.

0.000
0. 000
-431.
0. 303
0. 928
0.401
0.995
0. 000
0. 000
0.970
0.000

1. 008
2. 940
3. 000
4.
5. 233
6. 000
0.406
7. 307
0.000
8. 045

2.2 Geometric Resolution (Cont'd)

2.2.2 Eine Geometric Resolution - Daytime Visual (Cont'd)

 (3.2.1.1.2.1)
2.2.2.3 Acceptance - Thermal Vacuum
 OLS \#12 LF SRP is within the specification limits in both

 Primary and Redundant configurations. The Orbit Nominal curves are in paragraph 2.2.2.1 and are not included here.
ATTACHMENTS: LF SRP Curve Hot Limit

LF SRP Tables Hot Limit
LF SRP Curves Cold Limit
LF SRP Tables Cold Limit

SYSTEM 12.,SRP LF NORMAL,SSS=7..., M1 = 12 , DATE: 903

SYSTEM 12 ,SRP LF FBACK , SSS=7 $7, M 1=12$, DRTE: 903

LF. DAY, FALLBACK, PRIMARY
FLT. NO. $=12$ ENV. $=4$ 5SS= 7DEGC M1 = 1PDEGC DATE: 903
SUR.DIST. (NM) SRP ACTUAL (NM) SRP RATID

-787.	0.625	0.941
0.	0.000	0.000
-431.	0.334	0.954
-398.	0.317	0.955
0.	0.000	0.000
0.	0.307	0.947
0.	0.000	0.000
478.	0.321	0.965
0.	0.341	0.975
788.	0.000	0.000
0.	0.645	0.969

LF. DAY, FALLBACK, BACKUP
FLT. ND. $=12$ ENV. $=4$ SSS $=7$ DEGC M1 $=12 D E G C$ DATE: 903
SUR. DIST. (NM) SRP ACTUAL(NM) SRP RATID

-787.	0.625	0.942
0.	0.000	0.000
-431.	0.331	0.947
-398.	0.315	0.947
0.	0.000	0.000
0.	0.306	0.939
0.	0.000	0.000
498.	0.319	0.957
431.	0.339	0.968
788.	0.000	0.000
	0.645	0.969

LF, DAY, NDRMAL, PR IMARY

FLT. NG. $=12$ ENV. $=4$ SSS= 7DEGC MI = 1EDEGC DATE: 903
SUR. DIST. (NM) SRP ACTUAL (NM) SRP RATID

-800.	0.480	0.995
0.	0.000	0.000
-431.	0.305	0.935
-398.	0.397	0.989
0.	0.000	0.000
0.	0.230	0.960
0.	0.000	0.000
498.	0.401	0.993
0.	0.300	0.920
800.	0.000	0.000
	0.476	0.986

LF, DAY, NORMAL, BACKUP
FLT. ND. $=12$ ENV. $=4$ SSS= 7DEGC MI= 12DEGC DATE: 9O3
SUR.DIST. (NM) SRP ACTUAL(NM) SRP RATIO

-800.	0.480	0.994
0.	0.000	0.000
-431.	0.302	0.926
-398.	0.399	0.989
0.	0.000	0.000
0.	0.329	0.953
0.	0.000	0.000
398.	0.400	0.993
431.	0.397	0.911
0.	0.000	0.000
800.	0.476	0.985

SYSTEM 12,SRP LF NORMAL,SSS=3 . .MI =-8, DATE: $9 \varnothing 8$

$\begin{aligned} & -=\text { SPEC LIMIT } \\ & 0=+Z E O S \\ & x=-Z E S \end{aligned}$	

COLD
LIMIT

SYSTEM 12 ,SRP LF FBACK , SSS=3 . ,M1 = -8, DATE: 908

LF, DAY, NDRMAL, PRIMARY
FLT. ND. $=12$ ENV. $=4$ SSS= 3DECC M1= -8DEGC DATE: 908
SUR.DIST. (NM) SRP ACTUAL(NM) SRP RATIO

-800.	0.480	0.994
$* * * * *$	0.000	$* * * * * *$
-431.	0.305	0.935
-398.	0.394	0.977
$* * * * *$	0.000	$* * * * * *$
0.	0.232	0.967
$* * * * *$	0.000	$* * * * * *$
398.	0.400	0.990
431.	0.304	0.931
$* * * * *$	0.000	$* * * * *$
800.	0.462	0.957

LF, DAY, NDRMAL, BACKUP
FLT. ND. $=12$ ENU. $=4$ SSS= 3DEGC $M 1=-$ BDEGC DATE: 908
SUR.DIST. (NM) SRP ACTUAL(NM) SRP RATIO

-800.	0.480	0.994
$* * * * *$	$* * * * *$	$* * * * * *$
-431.	0.302	0.926
-398.	0.394	0.975
$* * * * *$	$* * * * *$	$* * * * *$
0.	0.230	0.960
$* * * * *$	$* * * * *$	$* * * * *$
398.	0.399	0.990
431.	0.301	0.922
$* * * * *$	$* * * * * *$	$* * * * *$
800.	0.462	0.956

LF., DAY, FALLBACK, PRIMARY
FLT. ND. $=12$ ENV. $=4$ SSS= 3DECC M1 $=$-EDECC DATE: 908
SUR.DIST. (NM) SRP ACTUAL(NM) SRP RATID

-787.	0.619	0.932
$* * * * *$	0.000	$* * * * *$
-431.	0.342	0.979
-398.	0.318	0.957
$* * * * *$	0.000	$* * * * * *$
0.	0.306	0.940
$* * * * *$	0.000	$* * * * *$
398.	0.322	0.970
431.	0.343	0.979
$* * * * *$	0.000	$* * * * * *$
788.	0.641	0.963

LF, DAY, FALLBACK, BACKUP
FLT. ND. $=12$ ENV. $=4$ SSS= 3DEGC M1 = -BDEGC DATE: 908
SUR. DIST. (NM) SRP ACTUAL (NM) SRP RATID
-787.

-431.
-398.

0 .
****휸․․
398.
431.

7 89.
0. 620

0. 340
0.316

0. 204

0. 320
0.340

0.642
0.933
*
0.972
0.949
******苗
0.931

0.96 ?
0. 972

0. 964

2.2 Geometric Resolution (Cont'd)

2.2.3 Smoothed Geometric Resolution - Infrared (3.2.1.1.2.2)
2.2.3.1 Baseline (Orbit Nominal)

The TS SRP is within spec for all measured scan angles.

ATTACHMENTS: TS SRP Curve Orbit Nominal
TS SRP Tables Orbit Nominal

SYSTEM . 12., SRP tarey/TS NORM

SSS=5 . ,M1 = - 8 , DATE: 914 ORBIT
NOMINAL

TS，MID，PRIMARY
FLT．ND．$=12$ ENV．$=4$ SSS＝SDEGC MI $=-$ BDEGC DATE： 914
SUR．DIST．（NM）GRP ACTUAL（NM）SRP RATID

-750.	1.928	0.813
0.	0.000	0.000
-431.	$1.48 日$	0.929
-398.	1.429	0.932
0.	0.000	0.000
0.	0.969	0.922
0.	0.000	0.000
398.	1.420	0.926
431.	1.479	0.924
0.	0.000	0.000
757.	1.900	0.840

TS，MID，BACKUP
FLT．ND：$=12$ ENV $=4$ SSS＝SDEGC M1＝－日DEGC DATE： 914
SUR．DIST．（NM）SRP ACTUAL（NM）SRP RATID
-750.
0.
-431.
－398．
0.
0.
0.
398.
431.
0.
757.

1．7日2
0． 793
0.000

1． 439
1． 382
0． 000
0.935

0． 000
1． 372
1． 430
0.000

1． 860

0． 000
0． 899
0.901

0． 000
0.890
0.000
0.894

0． 893
0.000

0． 823

2.2 Geometric Resolution (Cont'd)

2.2.3 Smoothed Geometric Resolution - Infrared (Cont'd)
(3.2.1.1.2.2)

2.2.3.2 Acceptance - Vibration

OLS \#12 underwent acceptance level SSS vibration per DMSS-OLS300 with cone cooler $S / N 024$ on $5 / 23 / 91$. The pre-to-post vibration SRP performance is shown on the attached curves and tables.

ATTACHMENTS:	TS	SRP curve pre-vibration
	TS	SRP tables pre-vibration
	TS	SRP curve post-vibration
	TS	SRP tables post-vibration

SYSTEM 12.,SRP LEM/TS. NORM

SSS=5 , M1 = - 8 ,,DATE:707

PRE
 VIB

$0=+Z E O S$
$x=-Z: E O S$

TS, MID, PRIMARY

FLT. ND. $=12$ ENV. $=4$ SSS= 5DEGC M1= -GDEGC DATE: 707
SUR. DIST. (NM) SRP ACTUAL (NM) SRP RATIU

-750.	1.846	0.821
-600.	1.786	0.907
-431.	1.489	0.930
-398.	1.429	0.932
-200.	1.105	0.922
0.	0.971	0.925
200.	1.106	0.922
398.	1.419	0.925
431.	1.482	0.926
601.	1.766	0.896
757.	1.894	0.838

TS, MID, BACKUP

FLLT. ND. $=12$ ENV. $=4$ SSS $=$ SDEGC M1 = -GDEGC DATE: 707
SUR. DIST. (NM) SRP ACTUAL(NM) SRP RATIU

-750.	1.793	0.797
-600.	1.726	0.876
-431.	1.433	0.895
-398.	1.375	0.897
-200.	1.063	0.886
0.	0.934	0.889
200.	1.063	0.886
398.	1.365	0.890
431.	1.426	0.891
601.	1.704	0.865
757.	1.845	0.816

SYSTEM 12.,SRP /TS NORM

TS. MID. PRIMARY

FLT. NO. $=12$ ENV. $=4$ SSS= 5DEGC M1 $=-8 D E G C$ DATE: 914
SUR.DIST. (NM) SRP ACTUAL (NM) SRP RATIU
-750.

1. 829
2. 813
3.

-431.
-39日.
0.000
0. 000

1. 488
0.929
2. 429
0.000
0.932
3.

0.968
0.000
0.000
0.922
0.
0.000

1. 420
2. 479
0.000
3. 900
0.926
0.924
0.000
4. 840

TS, MID, BACKUP

FLT. ND: $=12$ ENV. $=4$ SSS= SDEGC M1 = -EDEGC DATE: 914
SUR.DIST. (NM) SRP ACTUAL (NM) SRP RATID
-750.
0.
-431.
-398.
0.
0.
0.
398.
431.
0.
757.

1. 782
0.000
2. 439
3. 382
0.000
0.935
0.000
4. 372
5. 430
6. 000
7. 860
8. 793
9. 000
10. 899
11. 901
0.000
0.890
12. 000
13. 894
0.893
14. 000
15. 823

2.2 Geometric Resolution (Cont'd)

2.2.3 Smoothed Geometric Resolution - Infrared (3.2.1.1.2.2)

2.2.3.3 Acceptance - Thermal Vacuum

The TS SRP is within spec for the extremes of hot and cold Thermal Vacuum limit testing.

ATTACHMENTS: TS SRP Curve Hot Limits
TS SRP Tables Hot Limits
TS SRP Curve Cold Limits
TS SRP Tables Cold Limits

SYSTEM 12.,SRP NORM
 SSS=7 , M1 = 12 , DATE: 985
 0.4
\otimes

```
FLT. ND. = 12 ENV. = 4 5SS= 7DEGC M1= 12DEGC DATE: POS
```

SUR, DIST. (NM) SRP ACTUAL (NM) GRP RATID

-750.	1.833	0.815
0.	0.000	0.000
-431.	1.493	0.932
-398.	1.433	0.934
0.	0.000	0.000
0.	0.971	0.925
0.	0.000	0.000
398.	1.421	0.927
431.	1.483	0.926
0.	0.000	0.000
757.	1.916	0.848

TS, MID, BACKUP
FLT. NO. $=12$ ENV. $=4$ SSS= 7DEGC M1 = 12DEGC DATE: 905
SUR. DIST. (NM) SRP ACTUAL(NM) SRP RATIU
-750.
0.
-431 . -398.
0.
0.
0.
398.
431.
0.
757.

1. 789
0.000
2. 446
3. 388
0.000
0.938
0.000
4. 374
5. 435
0.000
6. 876
0.795
0.000
0.903
0.905
7. 000
8. 894
0.000
0.896
9. 896
10. 000
11. 830

SYSTEM 12.,SRP NORH/TS NOR

TS, MID, PRIMARY
FLT. ND. $=12$ ENV. $=4$ SSS= 3DEGC M1=-EDEGC DATE: 9OE
SUR. DIST. (NM) SRP ACTUAL(NM) SRP RATIU

-750.	1.818	0.809
0.	0.000	0.000
-431.	1.480	0.925
-398.	1.424	$0.92 日$
0.	0.000	0.000
0.	0.968	0.922
0.	0.000	0.000
398.	1.415	0.923
431.	1.477	0.922
0.	0.000	0.000
757.	1.893	0.837

TS. MID, BACKUP

FLT. ND. $=12$ ENV. $=4$ SSS= 3DEGC M1 $=$-EDEGC DATE: FOB
SUR.DIST. (NM) SRP ACTUAL(NM) SRP RATID
-750.
0.
-431.
-398
0.
0.
0.
398.
431.
0.
757.

1. 764
2. 000
3. 423
4. 369
0.000
0.929
5. 000
6. 359
7. 419
0.000
8. 845
9. 784
0.000
10. 889
11. 892
12. 000
13. 885
14. 000
15. 886
16. 886
17. 000
18. 816

2.2 Geometric Resolution (Cont'd)

2.2.4 Smoothed Geometric Resolution - Davtime Visual (3.2.1.1.2.2)
2.2.4.] Baseline (Orbit Nominal)

The LS Day SRP is within spec limits at Orbit Nominal conditions.

ATTACHMENTS: LS Day SRP Curve - Orbit Nominal
LS Day SRP Tables - Orbit Nominal

SYSTEM 12.,SRP LS DAY/
SSS $=5 \ldots, M 1=-8$, DATE $: 912$

LS, DAY, NGRMAL, PRIMARY

FLT. NO. $=12$		4 SSS= 5	M1 $=-8 \mathrm{PEGC}$	DATE:
SUR. DIST. (NM)	SRP	ACTUAL (NM)	SRP RATIO	
-800.		1. 537	0. 654	
0.		0. 000	0. 000	
-431.		1. 394	0.871	
-398.		1. 350	0. 880	
0.		0. 000	0. 000	
0.		0.927	0. 883	
0.		0.000	0. 000	
396.		1. 347	0.878	
431.		1. 403	0. 876	
0.		0. 000	0.000	
800.		1. 542	0.656	

LS, DAY, NORMAL, BACKUP
FLT. NO. $=12$ ENU. $=4$ SSS= 5DEGC M1=-BDEGC DATE: 912
SUR. DIST. (NM) SRP ACTUAL(NM) SRP RATID

-800.	1.547	0.658
0.	0.000	0.000
-431.	1.403	0.876
-398.	1.359	0.886
0.	0.000	0.000
0.	0.933	0.888
0.	0.000	0.000
398.	1.355	0.884
431.	1.412	0.882
0.	0.000	0.000
800.	1.552	0.660

2.2 Geometric Resolution (Cont'd)
2.2.4 Smoothed Geometric Resolution - Daytime Visual (Cont'd)
(3.2.1.1.2.2)

2.2.4.2 Acceptance - Vibration

The OLS \#12 SSS underwent acceptance level SSS vibrations per DMSS-0LS-300 on May 23, 1991. The LS Day SRP is within specification both before and after SSS vibration. No vibration-related changes in SRP were observed.

ATTACHMENTS: | LS Day SRP Curve | Pre-Vibration | |
| :--- | :--- | :--- |
| | LS Day SRP Tables | Pre-Vibration |
| | LS Day SRP Curve | Post-Vibration |
| | LS Day SRP Table | Post-Vibration |

SYSTEM 12, SRP. LS DAY/
$S S S=23 ., M 1=24$, DATE:527.

$\stackrel{\otimes}{\otimes}$

LS, DAY, NORMAL, PR IMARY

LS, DAY, NDRMAL, BACKUP
FLT. ND. $=12$ ENV. $=2 \cdot g 95=23 D E G C$ M1= 24DEGC DATE: 527
SUR.DIST. (NM) SRP ACTUAL.(NM) SRP RATID

-800.	1.573	0.670
0.	0.000	0.000
-431.	1.425	0.890
-398.	1.378	0.898
0.	0.000	0.000
0.	0.948	0.902
0.	0.000	0.000
398.	1.378	0.898
431.	1.429	0.892
0.	0.000	0.000
800.	1.586	0.675

$2-80$

SYSTEM 12.,SRP LS DAY/FM

$\mathrm{SSS}=23 ., \mathrm{MI}=24 .$, DATE: 814

0.8
$\stackrel{\nabla}{\Delta}$
$\stackrel{\otimes}{\bullet}$

0.0	2.0	4.0 $S D / 10 \square-(N M)$ $2-81$	6.0	8.0

LS, DAY, NGRMAL, PR IMARY
FLT. NO. $=12$ ENV. $=2$ SSSㅍ 23DEGC M1=24DECC DATE: 114
SUR. DIST. (NM) SRP ACTUAL(NM) SRP RATID

-800.	1.562	0.665
0.	0.000	0.000
-431.	1.416	0.884
-398.	1.371	0.894
0.	0.000	0.000
0.	0.942	0.897
0.	0.000	0.000
398.	1.368	0.892
431.	1.422	0.888
0.	0.000	0.000
800.	1.577	0.671

LS, DAY, NORMAL, BACKUP
FLT. ND. $=12$ ENU. $=2$ SSS= 23DEGC M1=24DEGC DATE: 814 SUR. DIST. (NM) SRP ACTUAL(NM) SRP RATID

-800.	1.573	0.669
0.	0.000	0.000
-431.	1.425	0.890
-398.	1.380	0.899
0.	0.000	0.000
0.	0.948	0.903
0.	0.000	0.000
398.	1.377	0.898
431.	0.431	0.893
0.	1.588	0.000
800.		0.676

2.2 Geometric Resolution (Cont'd)

2.2.4 Smoothed Geometric Resolution - Daytime Visual (Cont'd) (3.2.1.1.2.2)

2.2.4.3 Acceptance - Thermal Vacuum

The LS Day SRP is within specification allowance over the entire range of temperatures.

ATTACHMENTS: LS Day SRP Curve Hot Limits
LS Day SRP Tables Hot Limits
LS Day SRP Curve Cold Limits
LS Day SRP Tables Cold Limits

SYSTEM 12 ,SRP LS DAY/T

SSS=7, , M1 = 12 , DATE: 903

LS, DAY, NDRMAL, PR IMARY

FLT. ND. $=12$ ENV. $=4$ SSS= 7DEGC M1 = 1 PDEGC DATE: 903
SUR.DIST. (NM) SRP ACTUAL (NM) SRP RATIO

-800.	1.543	0.656
0.	0.000	0.000
-431.	1.398	0.873
-398.	1.355	0.883
0.	0.000	0.000
0.	0.929	0.885
0.	0.000	0.000
398.	1.350	0.880
431.	1.405	0.677
0.	0.000	0.000
800	1.550	0.660

LS, DAY, NDRMAL, BACKUP
FLT. ND. $=12$ ENV. $=4$ SSS= 7DEGC M1= 12DEGC DATE: 903
SUR. DIST. (NM) SRP ACTUAL(NM) SRP RATID

- 800.

0.

-431 .
-398.
0.
0.
0.
398.
431.
0.
800.

1. 553
2. 000
3. 40 g
4. 364
5. 000
0.935
0.000
6. 359
7. 414
8. 000
9. 561
10. 661
11. 000
12. 879
13. 889
0.000
14. 890
15. 000
16. 886
17. 883
18. 000
19. 664

SYSTEM .12.,SRP. LS DAY/I

LS, DAY, NDRMAL, PRIMARY

FLT. ND. $=12$ ENV. $=4$ SSS= 3DEGC M1 $4=-$ GDEGC DATE: 908
SUR. DIST. (NM) SRP ACTUAL(NM) SRP RATID

-800.	1.533	0.652
$* * * * *$	$* * * * *$	$* * * * * *$
-431.	1.393	0.870
-398.	1.348	0.878
$* * * * *$	$* * * * *$	$* * * * * *$
0.	0.925	0.881
$* * * * *$	$* * * * *$	$* * * * *$
398.	1.344	0.876
431.	1.398	0.873
$* * * * *$	$* * * * *$	$* * * * *$
800.	1.537	0.654

LS, DAY, NDRMAL, BACKUP
FLT. ND.쿠 12 ENV. $=-4$ - $55 S=3 D E G C$. M1= -BDEGC DATE: - 908
SUR. DEEE (NM) SRP ACTUAL(NM) SRP RATIO

-800; -	1. 543	0.657
******	10. 897	******
-431.	1. 402	0. 876
-398.	1. 357	0. 884
*****	10. 897	******
0	0. 931	0. 886
\#******	10. 897	
378.	1. 353	0.882
431.	1.408	0. 877
*****	10. 897	**********
800.	1. 548	0.659

2.2 Geometric Resolution (Cont'd)

2.2.5 Smoothed Geometric Resolution - Nighttime Visual (3.2.1.1.2.2)

LS Night SRP routinely is deliberately adjusted to be close to spec limit during system integration in order to optimize PMT signal-to-noise ratio, at the expense of SRP margin.

2.2.5.1 Baseline (Orbit Nominal)

The LS Night SRP is within spec for all measured scan angles

ATTACHMENTS: LS Night SRP Curve - Orbit Nominal
LS Night SRP Table - Orbit Nominal

SYSTEM 12 ,SRP LS NITE . ,SSS=5 . .,M1 = - 8 ,,DRTE: 913

L5, NITE, NORMAL, PR IMARY

FLT. ND. $=12$	=	4 S5S= 5	M1 = - ${ }^{\text {EDEGC }}$
SUR. DIST. (NM)	SRP	ACTUAL (NM)	SRP RATID
-799.		2. 893	0.966
0.		0. 000	0. 000
-430.		1. 624	0.972
-397.		2. 187	0.918
0.		0. 000	0. 000
0.		1. 193	0.884
0.		0. 000	0. 000
397.		2. 088	0.876
430.		1. 622	0.971
0.		0. 000	0.000
801.		2. 881	0. 958

LS, NITE, NDRMAL, BACKUP
FLT. ND. $=12$ ENV. $=4$ SSS= 5DEGC M1= -BDEGC DATE: 913
SUR. DIST. (NM) SRP ACTUAL(NM) SRP RATIO
-799.
2. 919
0. 975
0.
-430.
-397.
0.
. 000

1. 639
2. 209
3. 000
4. 205
5. 000
6. 108
7. 637
8. 000
9. 000
10. 981
11. 927
12. 000
13. 892
14. 000
15. 885
16. 980
17. 907
18. 000
0.967

2.2 Geometric Resolution (Cont'd)

2.2.5 Smoothed Geometric Resolution - Nighttime
 Visual (Cont'd) (3.1.2.2)

2.2.5.2 Acceptance - Vibration

The OLS \#12 SSS underwent Acceptance level SSS vibration per DMSS-OLS-300 on May 23, 1991. The pre-to-post vibration SRP performance is shown on the attached curves and tables.

ATTACHMENTS: LS Night SRP curve pre-vibration | LS Night SRP tables pre-vibration | |
| ---: | :--- |
| | LS Night SRP curve post-vibration |
| | LS Night SRP tables post-vibration |

LS: NITE, NORMAL, PRIMARY

FLT. ND. $=12$ ENV. $=2$ SSS= 23DEGC M1=23DEGC DATE: 810 SUR.DIST. (NM) SRP ACTUAL (NM) SRP RATIU

-799.	2.806	0.937
-601.	2.022	0.965
-430.	1.595	0.954
-397.	2.148	0.902
-200.	1.417	0.874
0.	1.174	0.870
200.	1.386	0.855
397.	2.053	0.862
430.	1.596	0.955
600	2.018	0.964
801.	2.850	0.948

LS, NITE, NORMAL, BACKUP
FLT. ND. $=12$ ENV. $=2$ SSS= 23DEGC M1 = 23DEGC DATE: B10
SUR. BIST. (NM) SRP ACTUAL(NM) SRP RATID

-799.	2.829	0.944
-601.	2.039	0.973
-430.	1.607	0.962
-397.	2.165	0.909
-200.	1.430	0.892
0.	1.184	0.877
200.	1.398	0.863
397.	2.070	0.869
430.	1.608	0.962
600.	2.036	0.972
801.	2.871	0.955

SYSTEM 12.,SRP. LS NITE . , SSS=23.,M1=23 , DRTE: 815

$$
\begin{gathered}
\mathrm{N} \\
\mathrm{~N} \\
\\
\hdashline \begin{array}{c}
\text { SPEC LIMIT } \\
0=+Z \operatorname{ESS} \\
x=-Z E O S
\end{array}
\end{gathered}
$$

Post VIB
"

L.S. NITE, NORMAL, PRIMARY

FLT. NO. $=12$. $=$	2 SSS= 23	M1 = 23DEGC	DATE:
SUR. DIST. (NM)	SRP	ACTUAL (NM)	SRP RATIO	
-799.		2. 802	0.936	
0.		0.000	0.000	
-430.		1. 595	0. 955	
-397.		2. 146	0. 901	
0.		0. 000	0.000	
0.		8. 175	0.870	
0.		0. 000	0.000	
397.		2. 053	0. 862	
430.		1. 593	0.953	
0.		0. 000	0. 000	
801.		2. 839	0. 944	

LS, NITE, NORMAL, BACKUP
FLT. ND. $=12$ ENV. $=2555=23 D E G C$ M1= 23DEGC DATE: 815
SUR.DIST. (NM) SRP ACTUAL(NM) SRP RATIO
-799.
0.
-430.
-397.
0.
0.
0.
397.
430.
0.
801.
2. 825
0. 000

1. 608
2. 163
3. 000
4. 195
5. 000
6. 070
7. 605
8. 000
9. 862
10. 944
11. 000
12. 962
13. 908
14. 000
15. 878
16. 000
17. 869
18. 961
19. 000
20. 951

2.2 Geometric Resolution (Cont'd)

2.2.5 Smoothed Geometric Resolution - Nighttime

Visual (Cont'd) (3.1.2.2)

2.2.5.3 Acceptance - Thermal Vacuum

The LS Night SRP is within specification limits over the Acceptance temperature range. No temperature-related changes in SRP over the Acceptance temperature range were observed.

ATTACHMENTS: LS Night SRP Curve Hot Limits
LS Night SRP Tables Hot Limits
LS Night SRP Curve Cold Limits
LS Night SRP Tables Cold Limits

SYSTEM 12, SRP LS NITE ..,SSS=7. . M1 = 12 , DRTE: 903

LS, NITE, NORMAL, PRIMARY

LS. NITE, NORMAL, BACKUP
FLT MD. $=12$ ENY $=4$ SSS= 7DEGC MI = 12DEGC DATE: 903
GUR. DIST. (NH) SRP ACTUAL (NM) SRP RATIO

-797	2.904	0.970
0	0.000	0.000
-470.	1.036	0.979
-397	2.208	0.927
0.	0.000	0.000
0.	1.204	0.891
0.	0.000	0.000
397	2.108	0.895
0.	1.647	0.985
001	0.000	0.000
0.	2.884	0.959

SYSTEM. 12 ,SRP. LS NITE .., SSS=3 . .,M1=-8 , DRTE: 908

LS，NI TE，NORMAL，PRIMARY

LS，NITE，NORMAL，BACKUP
FLT．ND．$=12$ ENV．$=4$ SSS＝3DEGC M1＝－日DEGC DATE：9OB
SUR．DIST．（NM）SRP ACTUAL（NM）SRP RATID
-799.
0.
-430.
-397.
0.
0.
0.
397.
430.
0.
801.

2． 958
0． 000
1． 656
2． 228
0． 000
1． 217
0． 000
2． 126
1． 647
0． 000
2． 942

0． 988
0.000
0.991
0.935
0.000
0.903

0． 000
0.893

0．986
0.000

0．97日

2.2 Geometric Resolution (Cont'd)

2.2.6 Data Sampling (3.2.1.1.2.3)

The sampling frequency ratios for all modes of the 5D-3 OLS satisfy the specification requirements. The calculations are contained in the 50-3 OLS System Summary Report. The results are summarized below. The worst-case sampling frequency ratio for each mode is given.

MODE
LF Day - Normal
LF Day - Fallback
LS \& TS Day - Normal
LS Night - Normal
TF - Normal
TF Fallback - Normal Side of scan 3.28
IF Fallback - Abnormal Side of Scan
2.50
3.44

SAMPLING FREO. RATIO (Spec: > 2.4)
2.58
2.61
2.66
3.28

2.3 Geometric Accuracy (3.2.1.1.3.1, 3.2.1.1.3.2, 3.2.1.1.3.3)

The alignment and synchronization of the SSS determine the Geometric Accuracy. Geometric accuracy is specified in 3 categories (Repeatability, Stability \& Fixed Errors). Within these categories, accuracy is further specified for Along Track, Along Scan (Stored Data), Along Scan (Direct Data), and Along Scan (with digital delphi generation, i.e., the Encoder Simulator locked mode).

There was an observed shift in alignment between the extremes of M1 temperature of $-8^{\circ} \mathrm{C}$ and $+12^{\circ} \mathrm{C}$ on the order of 0.16 milliradians or less for all channels. There was also an observed shift in synchronization in all modes in OLS \#12 of approximately 0.1 milliradians or less between M1 temperature extremes of $-8^{\circ} \mathrm{C}$ and $+12^{\circ}$.

The Repeatability error is calculated using the rms difference of the measured alignment/synchronization (as a function of the variation of Ml temperature on orbit) from the hot-to-cold average values of alignment/ synchronization. The total Repeatability contribution for synchronization is determined by rss'ing the wow-flutter error (as measured in test $6 \times 11 . S T$) and the jitter error (which was negligible on OLS \#12) with the repeatability shift between the Hot and Cold Limits.

The Primary Alignment Reference Axes (REFPLN) are calculated in a computer program using HRD \& T channel Alignment and Sync data from several Orbit Nominal tests. The data determine a best-fit alignment with respect to the Interface Mounting Axes. The REFPLN Alignment and REFPLN Synchronization curves are included here. The remainder of the Alignment and Synchronization data for the OLS \#12 SSS are in BVS 2693, Vol. III of this Acceptance Test Report.

The 5D-3 System has a Fallback mode utilizing an encoder control track and Encoder Simulator. The spec limits and measured results are shown in Table 2.3-2.

ATTACHMENTS: OLS \#12 REFPLN ALIGNMENT
OLS \#12 REFPLN SYNCHRONIZATION
OLS \#12 ALIGN/SYNC vs SPEC, Table 2.3-1
OLS \#12 Encoder Simulator Sync, Table 2.3-2

OLS\#I2 REFPLN ALIGNMENT

OLS\#12 REFPLN SYNCHRONIZATION

Table 2.3-1

OLS \#12 ALIGN/SYNC vs. SPEC

all numbers in milliradians

Table 2.3-2
ALONG-SCAN GEOMETRIC ACCURACY WITH ENCODER SIMULATOR

	Stored	Direct Fine	Direct Smooth
Repeatability-Spec, mrad Measured	1.0	1.1	2.2
	0.08	0.08	0.10
Stability - Spec, mrad Measured	0.50	0.50	0.50
	0.20	0.20*	0.20*
Fixed - Spec, mrad ${ }_{\text {Measured }}$	10.0	10.0	10.0
	0.88	0.88*	0.88*
Total - Spec, mrad Calculated	11.1	11.2	12.3
	1.10	1.10	1.10

*Inferred from stored number

2.4 RADIOMETRIC ACCURACY

2.4.1 T Channel Radiometric Accuracy (3.2.1.1.4.1 a,b,c)

The overall one sigma accuracy of the OLS \#12 T Channel DC response is $0.73^{\circ} \mathrm{K}$ compared to a $1.1^{\circ} \mathrm{K}$ spec and therefore OLS \#12 does meet this specification requirement.

Table 2.4.1-1 presents the overall summary of performance, which is discussed more fully in sections 2.4.1.1, 2.4.1.2 and 2.4.1.3.

ATTACHMENTS:
Table 2.4.1-1
Table 2.4.1-2
Table 2.4.1-3
Table 2.4.1-4
Table 2.4.1-5
Table 2.4.1-6
Figure 2.4.1-1
Figure 2.4.1-2
Figure 2.4.1-3
Figure 2.4.1-4
Figure 2.4.1-5
Figure 2.4.1-6
Figure 2.4.1-7
Figure 2.4.1-8
Figure 2.4.1-9
Figure 2.4.1-10

Overall Contributors
210° to $310^{\circ} \mathrm{K}$ Best Straight Line Calibrations
T DC Response Compilation of Test Runs
BSL Equation T Right, Run \#ll
BSL Equation T Mid, Run \#ll
BSL Equation T Left, Run \#11
T DC Response Plots, Run \#l - Primary
T DC Response Plots, Run \#1 - Redundant
T DC Response Plots, Run \#2 - Primary
T DC Response Plots, Run \#2 - Redundant
T DC Response Plots, Run \#9 - Primary
T DC Response Plots, Run \#9 - Redundant
I DC Response Plots, Run \#10 - Primary
T DC Response Plots, Run \#10 - Redundant
T DC Response Plots, Run \#ll - Primary
T DC Response Plots, Run \#Il - Redundant

TABLE 2.4.1-1
OLS \#12
OVERALL CONTRIBUTORS TO T-CHANNEL RADIOMETRIC ACCURACY

SPECIFICATION PARA. 3.1.4.1	RMS DEVIATION (${ }^{\circ} \mathrm{K}$)	SPECIFICATION MAX ONE SIGMA ERROR (${ }^{\circ} \mathrm{K}$)
a) Repeatability (<l day)	0.262	0.42
b) Stability (>1 day)	0.62	0.80
c) Fixed Deviations	0.29	0.60
TOTAL (RSS) ACCURACY	0.73	1.10

Discussion of T DC Response Test and Overview

The measurement of T DC Response is accomplished in the thermal vacuum chamber because the T detector must be cooled to its operating temperature of near $110^{\circ} \mathrm{K}$. Two controlled blackbody targets variable in temperature over the dynamic range of $190^{\circ} \mathrm{K}$ to $310^{\circ} \mathrm{K}$ provide the absolute infrared radiance reference. The temperature of each target is measured by five thermocouples which have been calibrated against a precision platinum resistance temperature standard. The five thermocouples provide target temperature gradient information to indicate target stability as well as the capability to average the five for the reference target temperature. T Channel DC Response consists of comparing the average target temperature to the channel output voltage at the input to the A / D converters for several target temperatures.

Eleven vacuum runs were made on OLS \#12. The T DC Response data from vacuum runs (1 through il) is compiled in Table 2.4.1-2 and -3, which show the equipment temperature environments and characteristics of each run. At the completion of testing, the T channel gain pots were readjusted to set $\mathrm{T}_{\text {rgt }}=$ $\mathrm{T}_{\text {LFT }}=4$. The column headed "Data Points" indicates how many target temperatures were in that run. The characteristics of the response itself are indicated in three columns each for T LFT, T MID and T RGT. The compared channel response to target temperature results in a difference for each data point. This difference is corrected for Ml Temperature so that all data for a given run reflect the same $M 1$ temperature and the expected shaper circuit difference is subtracted. In this form the difference data for a given run should ideally be a linear function to target temperature. A linear leastsquares fit to the corrected data is used to determine the equation of the best straight line (BSL). In Table 2.4.1-2 the slope error, the $210^{\circ} \mathrm{K}$ ordinate and the RMS data fit values for these different BSL's are listed in the columns headed Slope, Ordinate at $210^{\circ} \mathrm{K}$, and RMS Dev.

$$
2-110
$$

In order to distinguish between gain and bias type effects caused by environment, the $310^{\circ} \mathrm{K}$ value that results when the $210^{\circ} \mathrm{K}$ BSL value is forced to zero difference is also calculated. Table 2.4.1-3 shows the pre-shaper \% gain Difference from Nominal, the Bias Diff. from Nominal (at $190^{\circ} \mathrm{K}$) where the pre-shaper Gain is forced to nominal, and the Ml temperature coefficient (K factor); in three columns each for TRGT, TMID and TLEFT.

Tables 2.4.1-4, -5 and -6 show the STS computer processed and gain compensated T DC Response Data of the final "Orbit Nominal" Run (Run \#ll) for TRGT, TMID, and TLEFT respectively. The fourth line down in the body of the Best Straight Line Equation, "RMS Deviation", is the RMS error (for $210^{\circ} \mathrm{K}$ to $310^{\circ} \mathrm{K}$) of the data points fitted to the best straight line. "FP" is T Fine Primary; "FB" is T Fine, Backup (Redundant); "SP" is T Smoothed, Primary; "SB" is T Smoothed, Backup (redundant). The SP and SB are not used for T Right Only or for T Left Only in the Primary or Redundant normal modes; these are utilized only in the Fallback (slightly degraded) modes of operation. SP and SB are applicable to T Mid in normal Primary or Redundant modes.

Runs 1 and 2 together indicate the changes which accompany operation over the foreoptics cold-to-warm temperature range as indicated by M1 temperature.

Runs 3 and 4 together indicate the magnitude of the variation over the extremes of SSS temperature, $\left(+11^{\circ}\right.$ to $\left.-3^{\circ} \mathrm{C}\right)$; when compared to the $+3.2^{\circ} \mathrm{C}$ and $+4.6^{\circ} \mathrm{C}$ SSS run pairs with the corresponding M1 temperatures, (Runs 2 and 1 , respectively). However, changes between these runs are not only due to SSS temperature differences. The PSU, which contains the shaper networks was varied in temperature along with the SSS, from a 10 w of $0.5^{\circ} \mathrm{C}$ to a high of $+38.2^{\circ} \mathrm{C}$.

Figures 2.4.1-1 through 2.4.1-10 inclusive show, for Runs No. l through No. 11, (respectively), the test data points for Targets 1 and 2 and the BSL
plots for Right, Mid, and Left. (No BSL data plot was obtained for Runs 3 through 8 since they contain only 2 points).

The OLS \#12 average Ml coefficient (coupling factor) measured for the final run (\#11) was $0.207^{\circ} \mathrm{K}$ at $210^{\circ} \mathrm{K}$ scene per $1^{\circ} \mathrm{C}$ temperature change of Ml . The lower the Ml coefficient vaiue, the better the performance. The T Clamp leakage was -0.027\% T LEFT and -. 104\% RIGHT.

The Orbit Nominal BSL differences (from Table 2.4.1-4,5 and 6) between Fine Primary and Fine Backup are small, the largest being $0.38^{\circ} \mathrm{K}$ for T RGT, at the $310^{\circ} \mathrm{K}$ end. In the Smooth Primary and Backup modes, T RGT differs by $0.40^{\circ} \mathrm{K}$ (at $310^{\circ} \mathrm{K}$).

The difference between T LEFT and T RIGHT segments calibration (from Tables 2.4.1.3-4 and 5) is $0.56^{\circ} \mathrm{K}$ worst-case, vs. a spec 1 imit of $1.0^{\circ} \mathrm{K}$.
210° TO $310^{\circ} \mathrm{K}$ BEST STRAIGHT LINE CALCULATIONS

date	RUN\#	$\begin{aligned} & R / L \\ & T G \end{aligned}$	TL	$\begin{gathered} \text { \# OF } \\ \text { DDTA } \\ \text { POINTS } \end{gathered}$	temperature ${ }^{\text {c }}$			T RIGHT			T MID			iteft			COHMENTS
					Sss	M1	PSU	SLOPE	ORD. 2210°	$\begin{aligned} & \text { RHS } \\ & \text { DEV } \end{aligned}$	SLOPE	ORD. - 210°	$\begin{aligned} & \text { RHS } \\ & \text { DEV } \end{aligned}$	SLOPE	ORD. a 210°	$\begin{aligned} & \text { RHS } \\ & \text { DEV } \end{aligned}$	
$\begin{aligned} & \text { TDCRH3A } \\ & \text { 07/08/91 } \\ & \hline \end{aligned}$	1	5/6	13	14	4.6	-8.1	23.8	. 0030	. 16	. 09	-. 0056	. 87	. 05	-. 0011	. 44	. 08	COLD OPTIC LIMIT
$\begin{aligned} & \text { TDCRM3A } \\ & 07 / 13 / 91 \\ & \hline \end{aligned}$	2	5/6	9	8	3.2	12.4	23.5	$-.0063$. 43	. 05	-. 0160	1.25	. 07	-. 0134	. 88	. 05	HOT OPTIG Limit
$\begin{aligned} & \mathbf{T 1 2 1 1 2 3 1 8} \\ & 07 / 14 / 91 \end{aligned}$	3	$5 / 6$	9	2	10.9	15.3	38.2	$\cdot .0096$. 12	. 00	-. 0194	. 94	. 00	$\cdot .0176$. 57	. 00	HOT SOAK \#1
$\begin{aligned} & 712112318 \\ & 07 / 18 / 91 \end{aligned}$	4	5/6	13	2	-2.4	-10.8	0.5	$\bigcirc .0008$. 63	. 00	-. 0072	1.40	. 00	$\cdot .0042$	1.01	. 00	COLD SOAK \#1
07/23/91																	vaclum break PHT FAILURE
$\begin{array}{r} \text { T12172318 } \\ 08 / 25 / 91 \\ \hline \end{array}$	5	$5 / 6$	9	2	10.8	16.0	37.9	-. 0199	. 50	. 00	-. 0269	-1.34	. 00	-. 0208	. 75	. 00	$\begin{aligned} & \text { HOT SOAK \#1 } \\ & \text { REPEAT } \end{aligned}$
T121T231日 08/26/91	6	5/6	13	2	-3.9	-10.4	0.6	-. 0066	. 90	. 00	-. 0110	1.53	. 00	-. 0032	1.02	. 00	COLD SOAK \#1 REPEAT
T12172318 08/28/91	7	5/6	9	2	11.0	15.1	38.0	-. 0223	. 71	. 00	$-.0275$	1.37	. 00	$\cdot .0214$. 75	. 00	HOT SOAK \#2
$\begin{aligned} & 102172318 \\ & 08 / 30 / 91 \end{aligned}$	8	5/6	13	2	-2.7	-10.6	0.5	-.0088	1.03	. 00	$\cdots .0120$	1.57	. 00	$-.0043$	1.04	. 00	COLD SOAK \#2
TDCRM3C 09/02/91	9	5/6	9	7	5.6	12.2	33.4	$\cdot .0211$. 79	. 04	-. 0273	1.51	. 08	$\bigcirc .0197$. 94	. 02	Hot limit
TOCRH3B 09/08/91	10	5/6	13	7	2.4	-7.4	4.8	-. 0138	. 98	. 02	-. 0179	1.54	. 07	$\cdot .0111$	1.11	. 04	cold limit
TDCRM3C 09/13/91	11	5/6	13	18	4.8	-7.8	23.6	$\cdot .0185$. 97	. 05	$\cdot .0222$	1.50	. 07	$\cdot .0148$	1.03	. 05	homikal

	RGT/LFT				TEMPERATURE * ${ }^{\text {c }}$			I RIGHT			T MID			T LEFT			COMAEHTS
DATE	$\underset{\substack{\text { RUH } \\ \#}}{ }$	TG	TL	\# OF DATA POIHTS	SSS	H1	PSU	\% Gail DIFF. FROH NOH.	BIAS DIFF. FROH NOM.	$\begin{gathered} \mathrm{K} \\ \text { FACTOR } \end{gathered}$	$\begin{aligned} & \text { \% GAIH } \\ & \text { DIFF. } \\ & \text { FRON } \\ & \text { HOM. } \\ & \hline \end{aligned}$	Blas DIFF. FROM NOH.	$\begin{gathered} \text { K } \\ \text { FACTOR } \\ \hline \end{gathered}$	$\begin{aligned} & \text { \% GAIN } \\ & \text { DIFF. } \\ & \text { FROH. } \\ & \text { HOM. } \\ & \hline \end{aligned}$	bIas DIFF. FROM HOM.	$\begin{gathered} K \\ \text { FACTOR } \\ \hline \end{gathered}$	
TDCRH3A 07/08/91	1	5/6	13	14	4.6	-8. 1	23.8	. 62	. 56	. 198	. 04	1.28	. 209	. 27	. 78	. 209	COLD OPTIC LIMIT
TDCRMBB 07/13/91	2	5/6	9	8	3.2	12.4	23.5	-. 52	. 35	. 198	-1.17	1.22	. 209	-1.14	. 68	. 209	$\begin{aligned} & \text { HOT OPTIC } \\ & \text { LIMIT } \end{aligned}$
$\begin{aligned} & \text { T12122318 } \\ & 07 / 14 / 91 \end{aligned}$	3	5/6	9	2	10.9	15.3	38.2	-1.34	-. 66	. 198	-2.00	. 14	. 209	-2.10	-0.49	. 209	HOT SOAK \#1
$\begin{aligned} & T 121 ז 231 \mathrm{~B} \\ & 07 / 18 / 91 \end{aligned}$	4	5/6	13	2	- 2.4	-10.8	0.5	. 76	1.24	. 198	. 33	2.18	. 209	. 39	1.64	. 209	COLD SOAK \#1
07/23/91																	vaculm break PMT FAILURE
$\begin{aligned} & T 1212318 \\ & 08 / 25 / 91 \end{aligned}$	5	5/6	9	2	10.8	16.0	37.9	-2.51	$\cdot .83$. 204	-2.72	. 28	. 206	-2.40	-. 41	. 210	$\begin{aligned} & \text { HOT SOAK \#1 } \\ & \text { REPEAT } \\ & \hline \end{aligned}$
$\begin{aligned} & \mathrm{T} 121 \mathrm{~T} 231 \mathrm{~B} \\ & 08 / 26 / 91 \end{aligned}$	6	5/6	13	2	-3.9	-10.4	0.6	$\cdot .08$	1.28	. 204	-. 13	2.18	. 206	. 55	1.71	. 210	$\begin{aligned} & \text { COLD SOAK \#1 } \\ & \text { REPEAT } \end{aligned}$
$\begin{aligned} & T 12112318 \\ & 08 / 28 / 91 \end{aligned}$	7	$5 / 6$	9	2	11.0	15.1	38.0	-2.67	-. 61	. 204	-2.79	. 29	. 206	-2.48	-. 44	. 210	HOT SOAK \#2
$\begin{aligned} & 121+2318 \\ & 08 / 30 / 91 \end{aligned}$	8	5/6	13	2	-2.7	-10.6	0.5	-. 30	1.37	. 204	$-.24$	2.18	. 206	. 40	1.69	. 210	COLD SOAK W
$\begin{aligned} & \text { TDCRM3B } \\ & 09 / 02 / 91 \end{aligned}$	9	5/6	9	7	5.6	12.2	33.4	-2.41	$\bullet .15$. 204	-2.62	. 81	. 206	-2.04	. 27	. 210	HOT LIMIT
$\begin{aligned} & \text { T0CRM3B } \\ & 09 / 08 / 91 \end{aligned}$	10	5/6	13	7	2.4	-7.4	4.8	-1.11	. 88	. 204	-1.15	1.69	. 206	-. 56	1.34	. 210	COLD LIMIT
$\begin{aligned} & \text { TOCRM3C } \\ & 09 / 13 / 91 \end{aligned}$	19	5/6	13	18	4.8	-7.8	23.6	-1.83	. 48	. 204	-1.85	1.24	. 206	-1.20	. 87	. 210	NOMINAL

TABLE 2.4.1-4

```
OLS NUMBER 12
    T RGT DATA OF 09/12/91
    SSS AT 4.8C
    Ml AT -7.8C
    PSU TEMP = 23.6C
    Ml Coefficient = . }204\textrm{K}/\textrm{C
    T GAIN = 5
    T LEVEL = 13
    V2 <T Clamp> = 2.05404
    K9 <TL Step Size> = . }923
```


BEST STRAIGHT LINE EQUATION

	FP	(Δ)	FB	SP	(Δ)	SB
BSL SLOPE	-0.0185	-	-0.0215	-0.0183	-	-0.0215
BSL AT 190K<K>	1.34	$(.01)$	1.33	1.31	$(.02)$	1.29
BSL AT 210K<K>	0.97	$(.07)$	0.90	0.94	$(.08)$	0.86
BSL AT 310K<K>	-0.88	$(.38)$	-1.26	-0.89	$(.40)$	-1.29
RMS DEVIATION<K>	0.05	-	0.06	0.06	-	0.07
BSL AT 310K; 190 AT OV<K>	-1.30	-	-1.67	-1.30	-	-1.70
\% CHANGE FROM						
\quad NOM GAIN						

OLS NUMBER 12						
T MID DATA OF 09/12/91						
SSS AT 4.8C						
M1 AT -7.8C						
PSU TEMP $=23.6 \mathrm{C}$						
Ml Coefficient $=.206 \mathrm{~K} / \mathrm{C}$						
- T GAIN $=0$						
T LEVEL $=13$						
V2 <T Clamp> $=2.06055$						
K9 <TL Step Size> $=.9237$						
BEST STRAIGHT LINE EQUATION						
	FP	(Δ)	FB	SP	(4)	SB
BSL SLOPE	-0.0222	-	-0.0244	-0.0224	-	-0.0242
BSL AT 190K<K>	1.94	(.09)	1.85	1.93	(.08)	1.85
BSL AT 210K<K>	1.50	(.14)	1.36	1.48	(.12)	1.36
BSL AT 310K<K>	-0.72	(.36)	-1.08	-0.76	(.30)	-1.06
RMS DEVIATION<K>	0.07	-	0.09	0.08	-	0.09
BSL AT 310K;						
190 AT OV<K>	-1.31	-	-1.65	-1.35	-	-1.63
\% CHANGE FROM						
NOM GAIN	-1.85	-	-2.32	-1.91	-	-2.29
BIAS DIFF FROM						
NORMAL 190K<K>	1.24	-	0.79	1.19	-	0.80

TABLE 2.4.1-6

OLS NUMBER 12
T LFT DATA OF 09/12/91
SSS AT 4.9C
Ml AT -7.9C
PSU TEMP $=23.7 \mathrm{C}$
M1 Coefficient $=.210 \mathrm{~K} / \mathrm{C}$
T GAIN $=6$
T LEVEL = 13
V2 <T Clamp> $=2.06706$
K9 <TL Step Size> = . 9237

BEST STRAIGHT LINE EQUATION

	FP	(Δ	FB	SP	(Δ)	SB
BSL SLOPE	-0.0148	-	-0.0154	-0.0147	-	-0.0154
BSL AT 190K<K>	1.32	(.16)	1.16	1.31	(.18)	1.13
BSL AT 210K<K>	1.03	(.18)	0.85	1.02	(.19)	0.85
BSL AT 310K<K>	-0.45	(.24)	-0.69	-0.45	(.26)	-0.71
RMS DEVIATION<K>	0.05	-	0.05	0.05	-	0.04
BSL AT 310K; 190 AT OV<K>	-0.85	-	-1.05	-0.85	-	-1.06
\% CHANGE FROM NOM GAIN	-1.20	-	-1.48	-1.19	-	-1.50
BIAS DIFF FROM NORMAL 190K<K>	0.87	-	0.47	0.87	-	0.42

FIGURE 2.4.1-1
COLD OPTIC

FIGURE 2.4.1-2

COLD OPTIC
LIMIT
NNNI

FIGURE 2.4.1-3

HOT OPTIC LIMIT

FIGURE 2.4.1-5
HOT LIMIT

FIGURE 2.4.1-6

Figure 2.4.1-7
COLD LIMIT

FIGURE 2.4.1-8
COLD LIMIT

RUN \# 10

FIGURE 2.4.1-9
NOMINAL

Figure 2.4.1-10
NOMINAL

RUN \# 11

2.4 RADIOMETRIC ACCURACY
 2.4.1 T Channel Radiometric Accuracy (Cont'd)
 2.4.1.1 Repeatability (3.2.1.1.4.1a)
 The 1 sigma Repeatability of T Channel DC Response is
 $0.262^{\circ} \mathrm{K}$ compared to a $0.42^{\circ} \mathrm{K}$ one sigma specification maximum and therefore OLS \#12 does meet this specification requirements.

ATTACHMENTS

Table 2.4.1.1-1 Repeatability Contributors
Table 2.4.1.1-2 Gain and Bias Variations with Temperature Change
Table 2.4.1.1-3 Target Crosstalk, T Clamp Leakage Data

TABLE 2.4.1.1-1OLS \#12REPEATABILITY CONTRIBUTORS SUMMARY	
ERROR SOURCE	$\begin{aligned} & \text { ONE SIGMA } \\ & \text { ERROR }\left(K^{\circ}\right) \\ & \hline \end{aligned}$
1. Diurnal Ml Temperature Change $\left(4^{\circ} \mathrm{C}\right)$ A. Quantization of I Level Command B. Inability to Compensate Actual Effect Exactly	$\begin{aligned} & 0.19 \\ & 0.077 \end{aligned}$
2. Temperature Change $\mathrm{PSU} \pm 4.5^{\circ} \mathrm{C}$, $\mathrm{SSS} \pm 1^{\circ} \mathrm{C}$ A. Effect due to Gain Change B. Effect due to Bias Change	$\begin{aligned} & 0.066^{*} \\ & 0.058^{*} \end{aligned}$
3. T Clamp Shaper Compensation	0.09
4. T Clamp Leakage	0.104
TOTAL RSS REPEATABILITY ERROR (${ }^{\circ} \mathrm{K}$) SPECIFICATION LIMIT, ${ }^{\circ} \mathrm{K}$, ONE SIGMA *FROM TEST DATA (REDUCED)	$\begin{aligned} & 0.262 \\ & 0.42 \end{aligned} \operatorname{MAX} .$

Discussion of Repeatability Calculations

1. Dinurnal M1 Temperature Change
A. The effects of M1 temperature (more properly the foreoptics temperature) are a Repeatability error source. The foreoptics thermal time constant is short enough to permit significant diurnal temperature variations. The ability to compensate for foreoptics temperature using the T Level command greatly reduces this error but does not eliminate it. Although calculations enabling ground compensation smaller than the quantization of the T Level command are possible, it is herein assumed that they will not generally be made. Therefore an error is ascribed due to the T Level quantization as follows:
$0.294^{\circ} \mathrm{K}$ RMS T Level Cmd. Quantization Error at $210^{\circ} \mathrm{K}\left(1.02^{\circ} \times 1 \sqrt{12}\right)$ $x 0.642$ RMS Temperature Linearity Effects over $210-310^{\circ} \mathrm{K}$ dynamic range $=0.19^{\circ} \mathrm{K}$ RMS error
B. The fact that foreoptics temperature effect cannot be accurately predicted by the single monitor of M1 temperature means that in times of sharp transition the ability to compensate is impaired. It has been assumed that this error may be represented by a $1^{\circ} \mathrm{C}$ lag in M1 temperature during the $1 / 3$ of the orbit that sharp transistions occur. Therefore the inability to compensate the actual effect is ascribed the following error:

	$1^{\circ} \mathrm{C}$	in M1 Temperature
x	$1 \sqrt{3}$	RMS Over total orbit
x	0.207	T Left T Mid T Right average sensitivity coefficient of video at 210 K to Ml temperature change for OLS \#12 (K
		factor)
x	0.642	Temperature Linearity Effects over dynamic range
	0.077	RMS error

Discussion of Repeatability Calculations

Total T channel gain change with temperature may be broken down into two components as follows:

```
Total Gain \Delta = [{PSU \DeltaT) < P PG] + [SSS \DeltaT) < S S ]
    where: }\quad\mp@subsup{P}{G}{}=PSU\mp@subsup{U}{}{G}\mathrm{ coefficient of gain,% per }\mp@subsup{}{}{\circ}\textrm{C}\mathrm{ .
    SG}=SSS\mathrm{ coefficient of gain, % per }\mp@subsup{}{}{\circ}\textrm{C}\mathrm{ .
```

Similarly for bias changes with temperature:

```
Total Bias \Delta = [(PSU \DeltaT) < P P B ] + [(SSS \DeltaT) < < S S ]
```



```
    SB
```

Data from two pairs of runs designated A and B, were used to solve these equations simultaneously:

where: $\quad G=$ Total Gain change over temperature
$B=$ Total Bias change over temperature
$T_{p}=$ PSU Temperature change
$\mathrm{T}_{\mathrm{s}}=$ SSS Temperature change

Solved simultaneously for the temperature sensitivity factors, these equations can be reduced to the following:

$$
\begin{aligned}
& S_{G}=\frac{\left(T_{P A}\right)\left(G_{B}\right)-\left(T_{P B}\right)\left(G_{A)}\right.}{(T P A)\left(T_{S B}\right)-\left(T_{P B}\right)\left(T_{S A}\right)} \\
& P_{G}=\frac{G_{A}-\left(T_{S A}\right)\left(S_{G}\right)}{T_{P A}} \\
& S_{B}=\frac{\left(T_{P A}\right)\left(B_{B}\right)-\left(T_{P B}\right)\left(B_{A}\right)}{\left(T_{P A}\right)\left(T_{S B}\right)-\left(T_{P G}\right)\left(T_{S A}\right)} \\
& P_{B}=B_{A}-\left(T_{S A}\right)\left(S_{B}\right) \\
& T_{P A}
\end{aligned}
$$

2. SSS and PSU Temperature Change: Effect On Gain Change

The effects of SSS and PSU temperature change on gains were determined from parametric analysis of the four runs in Table 2.4.1.1-2. Solving simultaneous equations yielded sensitivity coefficients of gain change for both SSS and PSU temperature change. Temperature data from 5D-2 systems currentiy on-orbit indicates that the worst case SSS temperature variations are $1^{\circ} \mathrm{C}$ while worst case PSU temperature variations are $4.5^{\circ} \mathrm{C}$. Using the worst-case factors yields:
$S_{G}=.039 \%$ Gain change per degree SSS change
$\times 1^{\circ} \mathrm{C}$ temperature change
x $.31^{\circ} \mathrm{K}$ RMS over 210 K to 310 K range
$x 1 \sqrt{3}$ for uniform temperature distribution $=.007 \mathrm{deg}$
$P_{G}=-.082 \%$ Gain change per degree PSU change
$\times 4.5^{\circ}$ temperature change
$\mathrm{x} .31^{\circ} \mathrm{K}$ RMS over 210 K to 310 K range
$\times 1 \sqrt{3}$ for uniform temperature distribution $=-.066 \mathrm{deg}$

RSS'ing these two contributors yields 0.066 degree total.
3. SSS and PSU Temperature Change, Effect On Bias Change From Table 2.4.1.1-2:
$S_{B}=-.140$ deg Bias change per degree SSS change
$\times 1^{\circ}$ temperature change
$\times 0.642$ RMS Temperature Linearization Effects, 210 K to 310K
$\times 1 \sqrt{3}$ for uniform temperature distribution
$=-.052 \mathrm{deg}$
$P_{B}=-.015 \mathrm{deg}$ Bias change per degree PSU change
$\times 4.5^{\circ}$ temperature change
x 0.640 RMS Temperature Linearization Effects, 210K to 310K
$x 1 \sqrt{3}$ for uniform temperature distribution
$=-.025 \mathrm{deg}$
RSS'ing these two contributors yields 0.058 degree total.

4. T Clamp Shaper Compensation

The SSS temperature changes throughout each orbit are expected to cause a one sigma error of $0.146^{\circ} \mathrm{K}$ at 210 K due to the compensation for T clamp temperature variation from 228 K to 253K. This times the 0.642 RMS Temperature Linearization Effect over the dynamic range equals $0.09^{\circ} \mathrm{K}$ RMS error.

5. T Clamp Leakage

An along scan variation (ASV) effect may be caused by some of the scene radiance being viewed at the time of T clamp during the overscan period getting into the reference T Clamp value. This can happen if the T detector sensitivity extends slightly beyond the boundaries of $\mathrm{M4'}^{\prime}$ during the clamp time. The test performed for leakage is to view one target at $210^{\circ} \mathrm{K}$ during active scan while the other target (which is at the T Clamp angle) is varied over the 210° to $310^{\circ} \mathrm{K}$ dynamic range. This data is presented in Table 2.4.1.1-3. The effect on the response to the active scan target is attributed to the T clamp optical leakage.

Using the OLS \#12 T data from Table 2.4.1.1-3, the T clamp leakage contribution can be calculated as follows:

$$
\begin{aligned}
& T \text { clamp leakage ratio }(L R)=100 \% \times \Delta T \times \frac{\frac{\partial \mathrm{P}}{\Delta \mathrm{~T}} 214}{\Delta \mathrm{P}} \\
&=\Delta \mathrm{T} \times .50552 \%
\end{aligned}
$$

This calculation is performed in the MODE 4 data reduction of T121T221S. The ratio calculated is:

$$
\begin{array}{ll}
-0.032 \% & T \text { LEFT } \\
-0.122 \% & \text { T RIGHT }
\end{array}
$$

The peak error from T clamp leakage (due to the 310° background) can be calculated as follows:
peak error $=L R \times \Delta N \times\left(\frac{\partial P^{-1}}{\Delta T}\right)-1$

$$
=\Delta T \times \frac{\Delta N}{\Delta P} \times \frac{\frac{\partial P}{\Delta T_{214}}}{\frac{\bar{P}_{210}}{\Delta T}}
$$

$$
\begin{aligned}
& =\Delta T \times 0.8156 \times 1.0788 \\
& =\Delta T \times 0.880
\end{aligned}
$$

where:
$\Delta P=$ Difference in radiance between 210° and $310^{\circ} \mathrm{K}$
$=16.742 \mathrm{E}-4 \mathrm{w} \mathrm{cm}^{-2} \mathrm{sr}^{-1} @ 310^{\circ} \mathrm{K}$
$-2.3468 \mathrm{E}-4 \mathrm{~W} \mathrm{~cm}^{-2} \mathrm{sr}^{-1}$ @ $210^{\circ} \mathrm{K}$
$=14.395 \mathrm{E}-4 \mathrm{w} \mathrm{cm}^{-2} \mathrm{sr}^{-1}$
and: $\quad \Delta N=$ Difference in radiance between 240° and $310^{\circ} \mathrm{K}$
$=16.742 \mathrm{E}-4 \mathrm{~W} \mathrm{~cm}^{-2} \mathrm{sr}^{-1} @ 310^{\circ} \mathrm{K}$
$-5.001 \mathrm{E}-4 \mathrm{~W} \mathrm{~cm}^{-2} \mathrm{sr}^{-1} @ 240^{\circ} \mathrm{K}$
$11.741 \mathrm{E}-4 \mathrm{w} \mathrm{cm}^{-2} \mathrm{sr}^{-1}$
$\frac{\partial P}{\Delta T_{210}}=$ slope of radiance curve at $210^{\circ} \mathrm{K}=6.7452 \mathrm{E}-6$
$\frac{\partial \mathrm{P}}{\Delta \mathrm{T}}=$ slope of radiance curve at $214^{\circ} \mathrm{K}=7.277 \mathrm{E}-6$
$\Delta \mathrm{T}=$ measured change in response to 210° target as the background is varied from 210° to $310^{\circ} \mathrm{K}$.

RMS ERROR = PEAK ERROR
$\times 0.7605$ for RMS distribution of leakage radiance over dynamic range.
x 0.642 RMS Temperature Linearization Effect

FROM MODE 4 Data reduction:
Calculated RMS leakage error $=-0.027^{\circ} \mathrm{K}$ T LEFT
$=-0.104^{\circ} \mathrm{K}$ T RIGHT
The worst-case contribution to repeatability error by T-clamp leakage is therefore $-0.104^{\circ} \mathrm{K}$ RMS.

$$
2-134
$$

TABLE 2.4.1.1-2

		$\begin{aligned} & \text { SSS } \\ & \text { TEMP } \end{aligned}$	$\begin{aligned} & \text { PSU } \\ & \text { TEMP } \end{aligned}$	T RGT		T MID		T LFT	
				\% GAIN DELTA (\%)	$\begin{gathered} \text { BIAS CHG. } \\ 0190^{\circ} \mathrm{K} \\ \left({ }^{\circ} \mathrm{K}\right) \\ \hline \end{gathered}$	\% GAIN DELTA (\%)	$\begin{gathered} \text { BIAS CHG. } \\ 190^{\circ} \mathrm{K} \\ \left({ }^{\circ} \mathrm{K}\right) \end{gathered}$	\% GAIN DELTA (\%)	$\begin{gathered} \text { BIAS CHG. } \\ 0190^{\circ} \mathrm{K} \\ \left({ }^{\circ} \mathrm{K}\right) \end{gathered}$
$\begin{gathered} M 1=-8^{\circ} \mathrm{C} \\ (\text { Rün } \mathrm{A}) \end{gathered}$	RUN 11 (NOMINAL TEST)	4.8	23.6	-1.83	0.48	-1.85	1.24	-1.20	. 87
	RUN 8 (COLD SOAK	-2.7	0.5	-. 30	1.37	-. 24	2.18	. 40	1.69
	$\text { RUN } 11-$	$\begin{aligned} & 7.5 \\ & T_{S A} \end{aligned}$	$\stackrel{23.1}{T_{P A}}$	-1.53	$-.89$	-1.61	$-.94$	-1.60	$-.82$
$\begin{gathered} M 1=+12^{\circ} \mathrm{C} \\ \text { (Run B) } \end{gathered}$	$\begin{gathered} \text { RUN } 7 \\ (H O T \text { SOAK } \\ \# 2) \end{gathered}$	11.0	38.0	-2.67	-. 61	-2.79	. 29	-2.48	-. 44
	RUN 9 $\begin{aligned} & \text { HOT } \\ & \text { LIMIT) } \\ & \hline \end{aligned}$	5.6	33.4	-2.41	-. 15	-2.62	. 81	-2.04	. 27
	RUN 7 RUN 9	$\begin{gathered} 5.4 \\ \mathrm{~T}_{\text {SB }} \end{gathered}$	$\begin{gathered} 4.6 \\ \mathrm{~T}_{\mathrm{PB}} \end{gathered}$	$-.26$	$\stackrel{-.46}{B_{B}}$	$-_{\mathrm{G}_{\mathrm{B}}} 17$	$-_{B_{B}}^{52}$	$-._{B}^{44}$	$-.71$
Calculated Sensitivity Factors		$\begin{array}{ll} \text { SSS: } & \mathrm{S}_{\mathrm{G}} \\ \text { PSU: } & \mathrm{S}_{\mathrm{B}} \\ & \mathrm{P}_{\mathrm{B}}^{\mathrm{G}} \end{array}\left(\begin{array}{l} \% /{ }^{\circ} \mathrm{C} \\ \% /{ }^{\mathrm{C}} \\ \% /{ }^{\mathrm{C}} \\ { }^{\mathrm{C}} \\ { }^{\mathrm{C}} \mathrm{C} \end{array}\right\}$		$\begin{aligned} & -.011 \\ & -.070 \end{aligned}$	$\begin{aligned} & -.072 \\ & -.015 \star \end{aligned}$	$\begin{gathered} .039 * \\ -.082^{*} \end{gathered}$	$\begin{aligned} & -.085 \\ & -.013 \end{aligned}$	$\begin{aligned} & -.031 \\ & -.059 \end{aligned}$	$\begin{gathered} -.140^{*} \\ -.010 \end{gathered}$

TABLE 2.4.1.1-3
OLS \#12
target crosstalk, T CLAMP LEAKage Data*
$\begin{aligned} \text { SSS } & =+5^{\circ} \\ \text { M1 } & =-8^{\circ}\end{aligned}$

	$\begin{gathered} \mathrm{T} \\ \text { RIGHT } \\ \hline \end{gathered}$	T MID	T CPL	T CPR	T LEFT	
$\begin{aligned} & \mathrm{T1} 210^{\circ} \\ & \text { [T2@310*] } \\ & (\mathrm{T} 121 \mathrm{~T} 231 \mathrm{G}) \end{aligned}$	0.32	1.00	0.08	0.75	0.57	07-06-91
Difference, ΔT	0.25	0.12	0.03	0.07	0.08	
$\begin{aligned} & T 1210^{\circ} \\ & {\left[T 2 @ 210^{\circ}\right]} \\ & (T 121 T 221 S) \\ & \hline \end{aligned}$	0.07	0.88	1.05	0.62	0.45	07-07-91
$\begin{aligned} & T 2210^{\circ} \\ & {\left[T 10^{\circ} 310^{\circ}\right]} \\ & (T 131 T 221 A) \end{aligned}$	0.30	1.12			0.55	07-07-91
Difference, ΔT	0.14	0.21			0.13	
$\begin{aligned} & T 2210^{\circ} \\ & {\left[T 1 \text { @ } 210^{\circ}\right]} \\ & (T 1212215) \end{aligned}$	0.16	0.91			0.42	07-07-91
Worst Case Data From Tl21T221S. Mode 4 Data Reduction: T clamp leakage Peak leakage er RMS leakage err	tio is at 210 at 210	is is	$\begin{aligned} & -0.032 \% \\ & -0.055 \mathrm{~K} \\ & -0.027 \mathrm{~K} \end{aligned}$	$\begin{aligned} & -0.122 \% \\ & -0.213 K \\ & -0.104 K \end{aligned}$		

*Data is FP Deviation in ${ }^{\circ} \mathrm{K}$

2.4 Radiometric Accuracy

2.4.1 T Channel Radiometric Accuracy (Cont'd)

2.4.1.2 Stability (3.2.1.1.4.1b)

The T Channel Radiometric Accuracy (Stability) analysis in the OLS 5D-3 System Summary Report Paragraph 3.5.1.2, predicts $0.62^{\circ} \mathrm{K} 1$ sigma error in stability compared to the $0.8^{\circ} \mathrm{K}$ maximum specification requirement. This calculation is applicable to all 5D-3 systems with $190-310^{\circ} \mathrm{K}$ total range.

ATTACHMENTS

Table 2.4.1.2-1 Stability Contributors Summary
Table 2.4.1.2-2 Change in BSL 210°, $310^{\circ} \mathrm{K}$ Points Between Runs
Table 2.4.1.2-3 Change in $210^{\circ}, 310^{\circ}$ Output Deviation From Nominal (${ }^{\circ} \mathrm{K}$) between Power Supply 1 and Power Supply 2

STABILITY CONTRIBUTORS SUMMARY

ONE SIGMA

ERROR (${ }^{\circ} \mathrm{K}$)

1. Shaped Bias
a) Open Loop Mirror Emissivity
0.1
b) T Clamp Shaper Compensation - Temperature
0.23

- Age
0.17
RSS Total
$0.30^{\circ} \mathrm{K}$
X RMS Temperature Linearization Effect
0.642
= RMS Shaped Bias Errors
$0.19^{\circ} \mathrm{K}$

2. Bias
a) Preshaper Gain

- Inner Stage Temperature
0.28
- Bias Current
0.24
- Amplifiers
0.22
b) Post Shaper DC Drift $\underline{\mathbf{0 . 1 2}}$
RSS Total = RMS Bias Error
$0.45^{\circ} \mathrm{K}$

3. Gain

Postshaper Gain Changes - Amplifier
over the $210-310 \mathrm{~K}$ range, ${ }^{\circ} \mathrm{K}$ RMS Error $\underline{\mathbf{0 . 3 8}}$
$\begin{array}{ll}\text { IOTAL RSS Stability Error (Total Dynamic Range) } & 0.62\end{array}$

Stability Error Specification (${ }^{\circ} \mathrm{K}, 1$ Sigma) $\quad 0.80$ Maximum

Discussion of Stability Errors

The experimentally derived RMS change of the BSL(s) between runs was calculated to be $0.04^{\circ} \mathrm{K}, 0.04^{\circ} \mathrm{K}$ and $0.06^{\circ} \mathrm{K}$ for TRGT, TMID and TLEFT respectively. The two runs used were Run \#6 and Run \#8. The results verify the analytical estimate of the stability over time intervals greater than one day. This data is tabulated in Table 2.4.1.2-2.

As an additional check of stability, the Fine-Primary outputs of the three segments as a deviation from nominal (${ }^{\circ} \mathrm{K}$) at 210° and 310° were compared using power supply 1 data of TDCRM3C.ST and power supply 2 data of $6 \times 2 \times 3$ A.ST. (Both from Run \#11). This data is tabulated in Table 2.4.1.2-3. The deltas were calculated and RMS'd over the temperature range. The results are comparable to the "Change Between Runs" data.

TABLE 2.4.1.2-2
OLS \#12

CHANGE IN BSL 210, 310K POINTS BETWEEN RUNS

$$
S S S=+3^{\circ} \mathrm{C}, \mathrm{Ml}=-8^{\circ} \mathrm{C}
$$

TABLE 2.4.1.2-3
OLS \#12
T CHANNEL DC RESPONSE
DIFFERENCE BETWEEN POWER SUPPLIES 1 and 2
From Orbit Nominal (Run \#11), SSS $=+5^{\circ} \mathrm{C}, \mathrm{Ml}=-8^{\circ} \mathrm{C}$

	RIGHT		MID		LEFT	
	$\begin{aligned} & \text { TGT-1 } \\ & 210^{\circ} \mathrm{K} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { TGT-2 } \\ & 310^{\circ} \mathrm{K} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { TGT-1 } \\ & 210^{\circ} \\ & \hline \end{aligned}$	$\begin{array}{r} \text { TGT-2 } \\ 310^{\circ} \\ \hline \end{array}$	$\begin{array}{r} \text { TGT-1 } \\ 210^{\circ} \\ \hline \end{array}$	$\begin{array}{r} \text { TGT-2 } \\ 310^{\circ} \\ \hline \end{array}$
FP DEV [K] Power Supply 1 TDCRM3C.ST 09/13/91	0.97	-0.87	1.51	-0.62	0.94	-0.49
FP DEV [K] Power Supply 2 6X2X3A.ST	0.98	-0.93	1.56	-0.65	1.00	-0.55
Change * K	0.01	0.06	0.05	0.03	0.06	0.06
RMS * K						

2.4 RADIOMETRIC ACCURACY

2.4.1 T Channel Radiometric Accuracy (Cont'd)

2.4.1.3 Fixed Deviations (3.2.1.1.4.1c)

The Fixed deviations for OLS \#12 are $0.29^{\circ} \mathrm{K}, 1$ sigma, compared to the $0.6^{\circ} \mathrm{K}$ specification maximum. The calibrateable portion of the fixed deviations is $0.17^{\circ} \mathrm{K}$ RMS compared to the $0.4^{\circ} \mathrm{K}$ RMS specification maximum. The Fixed deviation calibration for separate detector segments is $0.82^{\circ} \mathrm{K}$ (worst case) compared to the $1^{\circ} \mathrm{K}$ spec. maximum. The maximum along scan variation was $0.14^{\circ} \mathrm{K}$ RMS for TF (Right) and $0.12^{\circ} \mathrm{K}$ RMS for TS compared to the $0.2^{\circ} \mathrm{K}$ RMS specification maximum.

ATTACHMENTS

Table 2.4.1.3-1 Fixed Deviations Contributors
Table 2.4.1.3-2 T Shaper Error Tabulation
Table 2.4.1.3-3 Target Deviation from Mean of Both Targets
Table 2.4.1.3-4 BSL Calibration Equations
Table 2.4.1.3-5 Fixed Deviation Calibration Differences for Separate Segments
Table 2.4.1.3-6 Along Scan Variation (265° to $310^{\circ} \mathrm{K}$) within a Separate Segments
Table 2.4.1.3-7 Cone (Inner Stage) Patch Temp EST
Table 2.4.1.3-8 Cone Cooler Outer Stage Temp EST
Figure 2.4.1.3-1 5D3 Nominal Shaper Curve
Figure 2.4.1.3-2 Along Scan Variation, T Right, $M 1=12^{\circ} \mathrm{C}$
Figure 2.4.1.3-3 Along Scan Variation, T Mid, $M 1=12^{\circ} \mathrm{C}$
Figure 2.4.1.3-4 Along Scan Variation, T Left, $M 1=12^{\circ} \mathrm{C}$
Figure 2.4.1.3-5 Along Scan Variation, T Right, $M 1=-8^{\circ} \mathrm{C}$
Figure 2.4.1.3-6 Along Scan Variation, T Mid, $M 1=-8^{\circ} \mathrm{C}$
Figure 2.4.1.3-7 Along Scan Variation, T Left, Ml $=-8^{\circ} \mathrm{C}$
Figure 2.4.1.3-8 Along Scan Variation, T Auto $M 1=12^{\circ} \mathrm{C}$
Figure 2.4.1.3-9 Along Scan Variation, T Auto $M 1=-8^{\circ} \mathrm{C}$

FIXED DEVIATION CONTRIBUTORS

DEVIATION SOURCE

1. Foreoptics Mirror Emissivity
2. T Clamp Shaper Compensation
3. Transfer Function
A. Non-Linearity $\quad 0.17 * 0.4^{\circ} \mathrm{K}$ Spec Max
B. Shaper Components Variation
0.10
C. Detector Spectrum Variation (included in 3A)
4. Test Targets
A. Temperature 0.10
B. Emissivity
0.10
C. Repeatability
0.04*

TOTAL (RSS) FIXED DEVIATION 0.29
FIXED DEV. SPECIFICATION LIMIT, ${ }^{\circ} \mathrm{K}$ ONE SIGMA
0.60 Maximum

* FROM TEST DATA ANALYSIS

5. Fixed Deviation BSL Calibrations Match for $\frac{\text { DATA }}{0.82} \frac{\text { SPEC MAX }}{1 .{ }^{\circ} \mathrm{K}}$ Separate Segments (Worst Case)
6. Along Scan Varations within a segment
$\left(265^{\circ}\right.$ to $\left.310^{\circ} \mathrm{K}\right)$ Worst Case

Discussion of Fixed Deviation Tests and Calculations

1. Foreoptics Mirror Emissivity

The foreoptics mirror emissivity is a source of Fixed deviations as well as of Repeatability and Stability deviations. The correction in operation is made on M1 temperature only; whereas the entire foreoptics causes the offset phenomena. The ground calibration is made in the thermal vacuum chamber, where M1 is cooled radiatively via a cold tunnel, which fills the Ml view beyond the optical field of view of the system. Thus the foreoptics temperature distribution in the chamber differs somewhat from operation in space, especially in that M2 is colder in the chamber. It is not possible to determine accurately this effect based upon present knowledge. It is therefore assumed that it is equivalent to a $1^{\circ} \mathrm{C}$ difference in Ml temperature, or about 0.207 at 210° using the actual OLS \#12 Ml coefficient (K factor). The RMS Temperature Linearization Effect, 0.642 , transforms this to a $0.13^{\circ} \mathrm{K}$ RMS contribution to fixed deviation.

2. T Clamp Shaper Compensation

The T Clamp shaper compensation contribution arises as follows. If the T Clamp emissivity were initially only 0.98 rather than the 0.995 used to calculate the compensation for T Clamp temperature, the error at $242^{\circ} \mathrm{K}$ would be $0.70^{\circ} \mathrm{K}$. Although this error would be compensated for when the T channel adjustments were made, a change in T Clamp temperature to $256^{\circ} \mathrm{K}$ or $230^{\circ} \mathrm{K}$ would result in an error of $0.78^{\circ} \mathrm{K}$, producing an uncompensated error of $0.08^{\circ} \mathrm{K}$. Over the dynamic range this is equivalent to $0.09^{\circ} \mathrm{K}$ RMS.

3. Transfer Function

A. The departure of the T channel radiometric transfer function from a linear relationship is not an error as such because it is known and compensation can be made for it. However, this type of deviation is included within the constraints of the Fixed deviation portion of the T channel radiometric accuracy spec. The nominal T Channel non-linear transfer function (shaper) error is tabulated in Table 2.4.1.3-2 and plotted in Figure 2.4.1.3-1. The nominal shaper error is $0.15^{\circ} \mathrm{K}$ RMS. This calculation is made with the 50-2 shaper, which is also used on OLS \#12. The worst-case reduced test data (from Tables 2.4.1-4,5 \& 6) RMS Deviations of the points from the BSL for OLS \#12, are $0.07^{\circ} \mathrm{K}$ for T Right (Smooth Backup), $0.09^{\circ} \mathrm{K}$ for T MID (Fine and Smooth Backup) and $0.05^{\circ} \mathrm{K}$ for T Left (Fine Primary \& Smooth Backup). The analytic value, $\left(0.15^{\circ} \mathrm{K}\right.$ RMS) and the worst-case test value of $0.09^{\circ} \mathrm{K}$ are RSS'ed to become $0.17^{\circ} \mathrm{K}$ RMS for this Fixed deviation source versus the $0.4^{\circ} \mathrm{K}$ maximum spec allowance for the calibrateable portion of the Fixed deviations. B. Departure of shaper components from design nominal values may cause additional peak errors of $0.25^{\circ} \mathrm{K}$ and are assigned a one sigma error of $0.1^{\circ} \mathrm{K}$. These deviations would not be included in the measured deviation, because the data points are not close enough together to adequately detect them.
C. The T detector spectrum difference from unit to unit is included in the calibration data and is therefore included in 3A, the non-linearity of transfer function.

4. Test Targets

The deviation of the reference test target indicated blackbody temperature from absolute is the result of contributions from three Fixed deviation sources.
A. The measurement of the averaged target temperature using the 5 thermocouples immersed in the target baseplate is subject to the accuracy of the PQL/Block V Thermocouple Aquisition and Control System calibrated per procedure MCS0116801B. A review of the calibration procedure and the equipment used has led to ascribing $0.1^{\circ} \mathrm{K}$ RMS to these sources.
B. The actual effective blackbody temperature of the target also deviates from that measured because of differing emissivity from that assumed and because the "true" radient temperature differs from the measured temperature using the thermocouples. The effective emissivity is a combination of true emissivity (which is better than 0.996 according to Eppley) and reflectance of up to 0.004 . An average emissivity of 0.998 is corrected for along with the thermocouple calibration. This source of deviation has been assigned 0.1 ${ }^{\circ} \mathrm{K}$ RMS .
C. Actual measurements with OLS \#12 system of the two Eppley IR Reference test targets over the 210° to $310^{\circ} \mathrm{K}$ range reveal small differences between the targets. These differences, as tabulated in Table 2.4.1.3-3, represent the target differences from the mean of both targets for T LFT and T RGT averaged from file TDCRM3C.ST (Run \#11). The eleven differences when RMS'ed yield $0.04^{\circ} \mathrm{K}$ RMS deviation for this source.

Fixed Deviation Calibrations for Separate Segments

The calibrations are represented by the best straight line (BSL) equations for the separate segments. The BSL deviation expressions (from ideal), in $y=m x+b$ form for the segments are tabulated in Table 2.4.1.3-4. In T Smooth the Right and Left detector segments are averaged and used across the entire scan line.

In order to determine the differences in calibrations for separate segments, (for comparison to the specification) the T Fine BSL deviation equations of Table 2.4.1.3-4 were evaluated at $210^{\circ} \mathrm{K}$ and $310^{\circ} \mathrm{K}$. The 3 possible segment differences were then calculated. Also, the worst-case deviations between segments were taken from the Best Straight Line Plots (Figures 2.4.1-1 thru 2.4.1-12). These results are tabulated in Table 2.4.1.3-5. The calibration differences for separate segments are within the 1*K maximum spec throughout the dynamic range of 210 to 310 K for OLS \#12.

Along Scan Variation ($265^{\circ} \mathrm{K}$ to $310^{\circ} \mathrm{K}$) Within a Segment

The Along Scan Variation (ASV) in T DC Response is considered to be a Fixed deviation, since as a function of scan angle it does not vary as a function of time per se. Figures 2.4.1.3-2, 3, 4, 5, 6, 7, 8 and 9 show the deviations along-scan vs. surface distance (nmi/100) for T RGT, T MID, TLFT, and T AUTO. The vertical scale factor is $1.0^{\circ} \mathrm{K}$ per cm . Four figures are for $M 1=-8^{\circ} \mathrm{c}$ and four are for $M 1=+12^{\circ} \mathrm{C}$. The dip in the plots of $+5,-8$ data for the $290^{\circ} \mathrm{K}$ target at -550 nmi surface distance is due to the inadvertent deletion of a data file. The slight sawtooth effect on the $290^{\circ} \mathrm{K}$ plots is a result of the missing data's effect on the processing of the data. All data was within spec. The computer printed number to the right of each curve is the computed RMS deviation in millidegrees K for the associated ASV plot. The

RMS ASV values are only printed for the target temperatures above $265^{\circ} \mathrm{K}$, i.e., the $270^{\circ}, 290^{\circ}$, and $310^{\circ} \mathrm{K}$ plots.

The T DC response BSL calibrations are taken using test scan angles of $-50^{\circ}(-600 \mathrm{nmi})$ for $T \mathrm{LFT},+50^{\circ}(+600 \mathrm{nmi})$ for $T \mathrm{RGT}$, and $+0^{\circ}(0 \mathrm{nmi})$ for T MID.

The OLS \#12 has some ASV, but is within spec. The worst case (max) ASV RMS value within a segment for OLS \#12 was $0.14^{\circ} \mathrm{K}$ and is entered in Table 2.4.1.3-6 to compare with the specification limit.

TABLE 2.4.1.3-2

I SHAPER ERROR LIST

The 190 to $310^{\circ} \mathrm{K}$ T Shaper used for OLS \#12 and up has 6 straight line segments of decreasing slope and 5 (inflections) diode break points. The significant features in the shaper curve are tabulated below:

$\left({ }^{\frac{T}{K}}\right)$	$\frac{\text { ERROR }}{\left({ }^{\circ} \mathrm{K}\right)}$	REMARKS
190	0	End point adjusted to be an Ideal Curve
195.5	-0.35	lst slope is parallel to Radiance (Smooth) Curve
201.5	0	
205	+0.16	lst diode cut-in
209	0	
214	-0.215	2nd slope is parallel to Radiance (Smooth) Curve
219.5	0	
223.5	+0.215	2nd diode cut-in
228	0	
235.5	-0.28	3rd slope is parallel to Radiance Curve
242	0	
246.5	+0.19	3 rd diode cut-in
252	0	
258	-0.205	4th slope is parallel to Radiance Curve
264.5	0	
269.5	+0.23	4th diode cut-in
275.5	0	
282	-0.16	5th slope is parallel to Radiance Curve
285.5	0	
294	+0.205	5th diode cut-in
301	0	
306	-0.06	6th slope is parallel to Radiance Curve
310	0	End point adjusted to be an Ideal Curve

The largest plus and minus errors in the $210 \mathrm{~K}-310^{\circ} \mathrm{K}$ range are $+0.23^{\circ}$ and $-0.28^{\circ} \mathrm{K}$ respectively.

The standard deviation $=0.15^{\circ} \mathrm{K}$ RMS over the 210° to $310^{\circ} \mathrm{K}$ dynamic range.

TABLE 2.4.1.3-3
OLS \#12

TARGET DEVIATION FROM MEAN OF BOTH TARGETS

TARGET TEMP ($\left.{ }^{\circ} \mathrm{K}\right)$	DEVIATION ($\left.{ }^{\circ} \mathrm{K}\right)$
210	-0.01
220	-0.07
230	-0.02
240	-0.01
250	0.03
260	0.01
270	0.02
280	-0.01
290	0.04
300	0.02
310	0.09
$R M S=\sqrt{\frac{\sum\left(\text { Dev. }{ }^{\circ} K\right)^{2}}{11}}=0.039^{\circ} \mathrm{K}$	

TABLE 2.4.1.3-4
 OLS \#12

BSL CALIBRATION EQUATIONS
(From Tables 2.4.1-4,5,6)

T FINE (Primary)			$\begin{array}{r} \text { EVA } \\ @ \quad 210^{\circ} \\ \hline \end{array}$	uated 0310°
T-Right:	Error $=-0.0185(\mathrm{~T}-190)+1.34$	$\left({ }^{\circ} \mathrm{K}\right)$	+. 970	-. 880
T-Mid:	Error $=-0.0222(\mathrm{~T}-190)+1.94$	$\left({ }^{\circ} \mathrm{K}\right)$	+1.496	-. 724
T-Left:	Error $=-0.0148(\mathrm{~T}-190)+1.32$	$\left({ }^{\circ} \mathrm{K}\right)$	+1.024	-. 456
T FINE (Redundant)				
T-Right:	Error $=-0.0215(\mathrm{~T}-190)+1.33$	($\left.{ }^{\circ} \mathrm{K}\right)$	+. 900	-1.250
T-Mid:	Error $=-0.0244(\mathrm{~T}-190)+1.85$	(*K)	1.362	-1.078
T-Left:	Error $=-0.0154(\mathrm{~T}-190)+1.16$	(${ }^{\circ}$)	+. 852	-. 688
T SMOOTH (Primary	$\begin{aligned} & \text { Error }=-0.0224(T-190)+1.93 \\ & \text { SP MID) } \end{aligned}$	($\left.{ }^{\circ} \mathrm{K}\right)$		
T SMOOTH (Redundan	$\begin{aligned} & \text { Error }=-0.0242(T-190)+1.85 \\ & - \text { SB MID) } \end{aligned}$	(${ }^{\prime}$)		

FIXED DEVIATION CALIBRATION DIFFERENCES FOR SEPARATE SEGMENTS

Calculated from Run \#12 BSL's in Table 2.4.1.3-4:

| DIFFERENCE
 AT $210^{\circ} \mathrm{K}\left({ }^{\circ} \mathrm{K}\right)$ | DIFFERENCE
 AT $310 \mathrm{~K}\left({ }^{\circ} \mathrm{K}\right)$ |
| :---: | :---: | | SPECIFICATION |
| :---: |
| (MAX) |

PRIMARY

T Mid to T Right	0.53	0.16	$1 \circ \mathrm{~K}$
T Mid to T Left	0.47	0.27	$1^{\circ} \mathrm{K}$
T Right to T Left	0.05	0.42	$1^{\circ} \mathrm{K}$

REDUNDANT

T Mid to T Right	0.46	0.17	$1^{\circ} \mathrm{K}$
T Mid to T Left	0.51	0.39	$1^{\circ} \mathrm{K}$
T Right to T Left	0.05	0.56^{*}	$1^{\circ} \mathrm{K}$

Worst Case Differences from Best Straight Line Plots (Figures 2.4.1-1 thru 2.4.1-12):

*WORST-CASE DATA

2-152

TABLE 2.4.1.3-6
 OLS \#12

ALONG SCAN VARIATION ($265^{\circ} \mathrm{K}$ to $310^{\circ} \mathrm{K}$) WITHIN A SEGMENT (From ASV Graphs)

T-FINE	ERROR (${ }^{\circ} \mathrm{K}$ RMS)	LIMIT (${ }^{\circ} \mathrm{K}$ RMS)
T-Left Segment	0.121	0.2
T-Mid (Sum) Segment	0.117	0.2
T-Right Segment	0.135	0.2
T-SMOOTH		
T-Sum	0.117	0.2

TABLE 2.4.1.3-7
 CONE COOLER S/N 024

OLS-12	
CONE (INNER STAGE) PATCH TEMP. EST	
TEMPERATURE $\cdot \mathrm{K}$	PATCH EST, VOLTS
95	5.655
96	5.248
97	4.874
98	4.529
99	4.212
100	3.920
101	3.651
102	3.403
103	3.174
104	2.963
105	2.768
106	2.588
107	2.422
108	2.268
109	2.125
110	1.993
111	1.871
112	1.757
113	1.651
114	1.553
115	1.437
116	1.377
117	1.298
118	1.225
119	1.156
120	1.092
121	1.022
122	.976
123	.924
124	
125	.875

TABLE 2.4.1.3-8
CONE COOLER OUTER STAGE TEMP EST
OLS \#12
T CONE TEMP EST (EST \#33)

I (DEG K)	EST VOLTS	T (DEG K)	EST VOLTS
158	4.8221	194	4.1282
159	4.8181	196	4.0328
160	4.8136	198	3.93
161	4.8088	200	3.8195
162	4.8035	202	3.7016
163	4.7978	204	3.5769
164	4.7915	206	3.4468
165	4.7848	208	3.3115
166	4.7775	210	3.1719
167	4.7695	212	3.0292
168	4.7609	214	2.8844
169	4.7515	216	2.7386
170	4.7414	218	2.5924
171	4.7306	220	2.4475
172	4.7188	222	2.305
173	4.7063	224	2.1659
174	4.6926	226	2.0302
175	4.678	228	1.8995
176	4.6622	230	1.7735
177	4.6454	235	1.4832
178	4.6273	240	1.2308
179	4.608	245	1.0159
180	4.5874	250	0.8359
181	4.5654	255	0.6873
182	4.5418	260	0.5650
183	4.517	265	0.4653
184	4.4904	270	0.3842
185	4.4622	275	0.3182
186	4.4323	280	0.2646
187	4.4008	285	0.2207
188	4.3673	290	0.1852
189	4.3322	295	0.1560
190	4.2951	300	0.1320
192	4.2156	305	0.1123

FIGURE 2.4.1.3-1

FIG. 2.4.1.3-5
ASV

SYSTEM 12, QATE: 707 TIME 831, SSS=5,M1=-8,TG=6, \quad, $=13$

SYSTEM 12 , DATE: 712 TIME 349 SSS $=5, M 1=12, T G=6, T L=8$

FIG. 2.4.1.3-8
ASV

FIG. 2.4.1.3-9
ASV

Ø. \quad.
SO 100
$4 . \square$
$8 . \square$

2.4 Radiometric Accuracy (Cont'd)

2.4.2 Davtime Radiometric Accuracy (3.2.1.1.4.2)

OLS \#12 achieved the 7\% absolute radiance requirement by setting the HRD channel gain as shown on the L channel DC Response plot, using the calibrated light source (VULS).

The analysis of the calibration accuracy and the L-Day channel stability show within-specification performance. The gain ratios (PMH/PML, PML/HRD, and PMH/HRD) were measured during bearing retrofit retest using the VULS during Acceptance Test in test $6 \times 2 \times 1.5 T$, and vary less than 0.3% from the average of the ratios. The gain ratios measured in test $6 \times 2 \times 2 . S T$ using a less accurate test method show greater variation.

The plot of L DC Response contains the calculated sensor switch points, $S(x)$, and relative gains $P(X)$, which are stored in the OLS Constants Memory page zero, locations 071 through 077. $\mathrm{P}(2)$ and $\mathrm{S}(2)$ represent the bypass of the PMT $1 / 9$ mode, which is not usually implemented on orbit.

OLS \#12 exhibited l.10dB drop in transmission from room temperature to $+5^{\circ} \mathrm{C}$. The correct light level corresponding to $2.12 \times 10^{-2} \mathrm{~W} / \mathrm{cm}^{2}-\mathrm{sr}$ is changed by $3 \%(0.26 \mathrm{~dB})$ relative to factory adjustment based on updated HRD spectral data used in the GAINSET program. Also, OLS \#12 exhibited a lower optics transmission than typical OLS units by 2 dB in the HRD channel. Thus $\mathrm{P}(0)$ must be reset to 6.0 (nom) $+1.10+0.26+2=9.36 \mathrm{~dB}$. Rounding off to the nearest $1 / 8 \mathrm{~dB}$ gives 9.375 dB as the new setting for $\mathrm{P}(0)$.

The Sl value used for OLS 12 DC response adjustment is 2.96 v . Also, the Gl value (HRD to PMT gain offset factor due to differing spectra) used was 4.37 db and the lunar/solar gain ratio used was 1.033 .

P1 is derived using the PMT LO/HRD average gain value of 49.98 dB with a compensation for the HRD Loss and PMT Gain Ratios with temperature from the bearing retrofit retest data as plotted in figure 2.4.2-2 and converted to dB of 1.10 dB and .61 dB , respectively. The Pl value is $49.98+0.61+1.10=51.69$ (rounded to nearest $1 / 8$ th $d B=51.75$).

ATTACHMENT:	OLS \#12	L Channel DC Response Plot
	Table 2.4.2-1	OLS \#12 DC Response Stability
	Table 2.4.2-2	OLS \#12 PMT/HRD DC Response vs. SSS Temp.

Table 2.4.2-1
OLS \#12 L DC Response Stability

Stability vs. Time ($6 \times 2 \times 1$. ST data using VULS)

DATE	$\frac{\text { PMT HI }}{\text { PMT LO }}$	$\frac{\text { PMT LO }}{\text { HRD }} d B$	$\frac{\text { PMT HI }}{\text { HRD }}$
08/10/91	29.74	49.98	79.71
08/14/91	29.73	49.95	79.68
10/26/91	29.73	50.15	79.88
10/27/91	29.71	49.82	79.53
Average (Direct Multiple)	$\begin{aligned} & 29.73 \mathrm{~dB} \\ & (30.65) \end{aligned}$	$\begin{gathered} 49.98 \\ (315.50) \end{gathered}$	$\begin{aligned} & 79.70 \mathrm{~dB} \\ & (9660.51) \end{aligned}$

Stability vs. Temperature ($6 \times 2 \times 2$. ST data using half sphere source)

DATE	ENVIRONMENT	$\frac{\text { PMT HI }}{\text { PMT LO }}$	$\frac{\text { PMT LO }}{\text { HRD }} d B$	$\frac{\text { PMT HI }}{\text { HRD }}$
08/18/91	TV Amb	29.74 dB	39.06 dB	68.80 dB
DATE	ENVIRONMENT	$\frac{\text { PMT HI }}{\text { PMT LO }} \text { dB }$	$\frac{\text { PMT LO }}{\text { HRD }}$	$\frac{\text { PMT HI }}{\text { HRD }}$
08/22/91	+5/-8	29.65	40.85	70.79
08/25/91	+12/+15	29.69	40.23	69.93
08/26/91	-2/-11	29.63	41.42	71.06
08/28/91	+12/+15	29.76	40.44	70.19
08/30/91	-2/-11	29.78	41.47	71.25
09/02/91	+7/+12	29.68	40.66	70.35
09/07/91	+3/-8	29.68	41.06	70.74
09/12/91	+5/-8	29.69	40.89	70.58
$\overline{\text { Average }}$		29.70 dB	40.88 dB	70.57 dB

TABLE 2.4.2-2. PMT/HRD DC RESPONSE vs. SSS TEMPERATURE

2.4 Radiometric Accurack, (Cont'd)

2.4.3 Nighttime Radiometric Accuracy (3.2.1.1.4.3)

The PMT accuracy is required to degrade by no more than 60% from its initial accuracy at time of Acceptance testing to end of 3 year orbital life.

The 5D-3 OLS System Summary Report indicates PMT channel stability to be within 25.7% over the mission life so that the PMT meets this specification requirement. The above figures do not include corrections utilizing on-board LED calibration. The PMT CAL LED is extremely stable, and has an essentially constant output over the mission life.

The DC response curve of the OLS \#12 PMT is shown in the L Channel DC Response curve in paragraph 2.4.2. Unlike the HRD, the PMT optics transmission appears typical.

ATTACHMENT: Table 2.4.3-1 PMT CAL Baseline data (See para 2.4.2 attachment for L. Chan. DC Response curve)

TABLE 2.4.3-1
PMT CAL BASELINE DATA

The PMT Cal voltage EST is a monitor of PMT sensitivity and stability characteristics. In order to relate on-orbit measurement of PMT CAL to measurement during Acceptance Test, the following data are provided. PMT CAL Voltage (EST \#40) and PMT BU (Back-up) CAL V (EST \#41) are sampled 500 times in test $6 \times 6 \times 2 . S T$. The PMT Cal voltage EST output is tabulated below for all runs after PMT replacement.

TABLE 2.4.3-1
PMT CAL BASELINE DATA

DATE	SSS TEMP	OUTPUT VOLTAGE (mV)	
		$\begin{aligned} & \text { PMT CAL V } \\ & \text { (EST \#40) } \end{aligned}$	$\begin{aligned} & \text { PMT BU CAL V } \\ & \text { (EST \#41) } \end{aligned}$
08-09-91	+25	2478	2475
08-14-91	+25	2499	2487
09-03-91	+12	2378	2372
09-08-91	+3	2361	2356
09-14-91	+5	2381	2376
	AVERAGE	2419	2413
Max change	m AVERAGE	3.31\%	3.07\%

2.4 RADIOMETRIC ACCURACY. (Cont'd)

2.4.4 Gain Control Accuracy (3.1.4.4)

Along-Scan Gain Control (ASGC) accuracy is within the specification limit of 4 dB of the smooth monotonic curve drawn through the nominal values of Gain Value versus Scense Solar Elevation (GVVSSE), tabulated in para 3.2.1.1.1.4 of DMSS-0LS-300.

System Tests $5 \times 6 \times 3$.ST and $5 \times 5 \times 6$. ST exercise the ASGC function through various combinations of extremes of slope and bias adjustment; and measure channel output for a wide range of values. These are automatically compared against stored test limits which ensure spec compliance.

An analysis using the ASGC software algorithm showing 3.25 dB maximum error is summarized in the System Summary Report paragraph 3.5.4.

ATTACHMENTS: None.

2.4 RADIOMETRIC ACCURACY, (Cont'd)

2.4.5 Gain Control Adjustability (3.2.1.1.4.4 et al)

The OLS \#12 Gain Control Adjustability is the same as for 5D-1 systems. The OLS 5D-3 System Summary Report paragraph 3.5.5 contains the analysis required to demonstrate conformance with the specifications, with additional information below. TERMINATOR LOCATION (3.1.4.5.1)

The GNC Command (an uplink command) has a sub mode (GNC 100 X) which allows the GVVSSE bias (terminator location) to be adjusted by X degrees, where X is a 6-bit 2's complement word with an LSB of 0.5°. This results in the required range of ± 15.5 degrees.

GAIN CHANGE RATE (3.1.4.5.2)
The GNC command submode (GNC 101 X) allowed the GVVSSE slope to be varied by a factor of $1+X$ over $\pm 48 \%$ in 1.6% increments where X is a 6-bit 2^{\prime} s complement word with an LSB of 2^{-6}. This results in the required range of $\pm 48 \%$. However, the BRDF change in the L channel gain calculation required the deletion of this capability to meet timing limitations in the OLSP. The 886 spec must be revised to reflect this change.

MAXIMUM GAIN SETTING (3.2.1.1.4.5.3)
The maximum ASGC gain is commandable. An operational value is determined in Early Orbit Calibrations. The value is stored in the Operational Constants Memory location page θ Address 104 (BCMAX). The ASGC function \& performance are exercised in tests $5 \times 6 \times 3$.ST \& $5 \times 6 \times 6 . S T$

COMMANDABLE T-CHANNEL GAIN (3.2.1.1.4.5.4)
The T-Channel Commandable Gain is exercised in test $6 \times 8 \times 2$.ST. The channe 1 output is measured for the entire range of commandable gains. The T Channel Gain is required to have the capability of being varied by command to be between 146% and 149% of the established minimum gain value (0 dB).

The actual percentage of TGAIN change was not measured as part of bearing retrofit. However, previously this was measured for OLS \#12 as 49.8% for T Right and 49.2% for T Left.

Each step of TGAIN is required to be between 1.7% and 3.7% above the preceeding lower gain value. Measured gain steps on OLS \#16 ranged from 1.86% to 3.47%, within specification.

COMMANDABLE T CHANNEL LEVEL (3.2.1.1.4.5.5)
The T Channel Commandable Level is also exercised in test $6 \times 8 \times 2.5 T$. The specification requires that TLEVEL be variable over at least a 14° range in steps of $1.1^{\circ} \mathrm{K}$ or less. Measured results during the original OLS 12 testing were 15.12° range and step sizes between $0.969^{\circ} \mathrm{K}$ to $1.027^{\circ} \mathrm{K}$ worst-case; all within specification.

2.4 RADIOMETRIC ACCURACY, Cont'd

2.4.6 A/D Conversions \& Algorithms (3.2.1.1.4.6.2 \&

3.2.1.1.4.6.3)

DMSS-OLS-300 specifies that the Stored Smooth Algorithm accuracy with an ideal A/D shall be verified by analysis. OLS 5D-3 System Summary Report contains the analysis which shows that the LS \% Full Scale Deviation does meet the specification. The results are summarized below:

The Actual A/D Conversion Radiometric Accuracy was measured in system test $6 \times 10 . S T$. The worst-case results from the OLS \#12 Thermal Vacuum runs (Cold Limit \& Orbit Nominal) are summarized below:

A/D	$\begin{gathered} \text { BSL SLOPE } \\ (\% \text { DEV FROM IDEAL) } \end{gathered}$	BSL OFFSET (\% OF FULL SCALE)	RMS DEV FROM BSL (\% OF FULL SCALE)
SDF-L PRIM	-0.33	0.18	0.04
RED	-0.19	0.10	0.03
SDF-T PRIM	0.17	-0.12	0.15
RED	0.38	-0.16	0.17
RTD-F PRIM	-0.33	0.18	0.04
RED	-0.18	0.08	0.05
SPEC	± 1.0	± 1.0	0.5
RTD-S PRIM	-0.23	0.08	0.02
RED	-0.26	0.06	0.02
SDS-L PRIM	-0.23	0.06	0.04
RED	0.20	0.06	0.06
SDS-T PRIM	0.10	-0.30	0.06
RED	0.50	-0.20	0.08
SPEC	± 0.5	± 0.5	0.25

2.5 RADIOMETRIC RESOLUTION (3.2.1.1.5 et al.)

DMSS-OLS-300 apportions the Radiometric Resolution verification between Test and Analysis.

The Fine and Direct Smoothed Radiometric Resolution (para.
3.2.1.1.5.1), as well as the Stored Smoothed A/D Converter Error (para. 3.2.1.1.5.2), were measured in System Test 6×10. ST during the OLS \#12 vacuum runs and are tabulated below:

PEAK DEV FROM BSL

A/D					(\% OF FULL SCALE)	SPEC
SDF-L	PRIM	0.07	$\pm 0.8 \%$			
	RED	-0.06	$\pm 0.8 \%$			
SDF-T	PRIM	0.33				
	RED	-0.30	$\pm 0.8 \%$			
RTD-F	PRIM	0.08				
	RED	0.12				
RTD-S	PRIM	0.04				
	RED	-0.04	$\pm 0.5 \%$			
SDS-L	PRIM	-0.07				
	RED	0.07				
SDS-T	PRIM	-0.10	$\pm 0.5 \%$			
	RED	-0.16				

The Stored Smoothed Algorithms Resolution with Ideal A/D (para. 3.2.1.1.5.2.1) are verified by Analysis in OLS 5D-3 System Summary Report, and are summarized in Table 2.5.1.

TABLE 2.5-1
Stored Smoothed Algorithms Resolution With Ideal A/D

ITEM	SPEC	ACTUAL
Accuracy		
LS Algorithm	$< \pm 2.2 \%$	-1.70%
		$+2.09 \%$
TS Algorithm	$< \pm 0.4 \%$	$\pm 0.39 \%$

Resolution
LS Algorithm
$<1.6 \% \quad 1.57 \%$
TS Algorithm

Population 1 Density	25%	25%
Quantization	$<0.8 \%$	0.78%
Population 2 Density	75%	75%
Quantization	$<0.4 \%$	0.39%
Population Distribtution	Uniform	Uniform
Quantization Capability	0.4%	0.4%

2.6 NOISE

2.6.1 T Channel Noise (3.2.1.1.6.1)

The T Channel noise equivalent temperature difference (NETD) is specified between 210 K and 310 K , although the T channe responsivity extends down to 190K.

The NETD is measured during T Channel DC response tests in the Thermal Vacuum Chamber.

The Channel views a stable blackbody target at 210 K (worst-case noise). The channel output is sampled \& the noise (std. deviation) of 2000 samples is converted to NETD using the following formula:

NETD $=$ [Avg Noise in Volts * 24 */Volt] * 1.074 (the shaper slope correction)

The OLS \#12 NETD is in-spec. The noise in the T Right segment is 11.8% larger than in the T Left segment.

	TF	TS	TS Fallback
SPEC	$2.2{ }^{\circ} \mathrm{K}$	$0.90^{\circ} \mathrm{K}$	$1.3^{\circ} \mathrm{K}$
Worst-Case Measured NETD	$0.695{ }^{\circ} \mathrm{K}$	$0.279{ }^{\circ} \mathrm{K}$	$0.393^{\circ} \mathrm{K}$
Worst-Case Average NETD	$0.662^{\circ} \mathrm{K}$	$0.273{ }^{\circ} \mathrm{K}$	$0.370^{\circ} \mathrm{K}$

ATTACHMENT: Table 2.6.1-1 OLS \#12 Primary Side NETD
Table 2.6.1-2 OLS \#12 Redundant Side NETD

Table 2.6.1-1

* Worst Case Measured
** Shaper Slope Correction Factor $=1.074$

Table 2.6.1-2

*Worst Case Measured
**Shaper Slope Correction Factor $=1.074$

2.6 NOISE (Cont'd)

2.6.2 L-Channel Noise (Day) (3.2.1.1.6.2)

The L Channel Noise is measured using the calibrated Variable Uniform Light Source (VULS). Dark noise is measured in test $6 \times 3 \times 1 . S T$ and shot noise is measured in $6 \times 3 \times 5$.ST. The OLS \#12 HRD is in-spec for the entire range of illumination. Worst-case HRD SNR exceeds the specification. In summary:

LIGHT LEVEL	SNR		
	SPEC	PRIOR OLS 12 TESTING WORST CASE MEASURED	RETEST WORSE CASE (FROM GRAPH)
5.5×10^{-5}	5	7.45	7.8
5.5×10^{-4}	34.8	68.1	88.1
1.1×10^{-3}	62.3	116	140
2.2×10^{-3}	112	189	201
5.5×10^{-3}	200	251	235
ATTACHMENT:	OLS \#	12 HRD Channel SNR Gr	aph

2.6 NOISE (Cont'd)

2.6.3 L Channel Noise (Night) 3.2.1.1.6.3)

The PMT dark noise is measured in all environments in Tests $6 \times 3 \times 1$.ST, $6 \times 3 \times 2$.ST and $6 \times 3 \times 4$.ST. The SNR is calculated from the measured noise (std. deviation of multiple voltage samples) vs.
light level and compared against spec values.
The minimum SNR from Bearing Retrofit retest is 7.8 at $8.0 \times$ 10^{-9} watts $/ \mathrm{cm}^{2}-s r$. The minimum SNR from Bearing Retrofit Retest is 16.0 . The worst case combined PMT shot noise and dark noise SNR from bearing retrofit testing is 7.01 calculated as SNR $=1 / \sqrt{1 /(\text { SNR dark })^{2}+1 /(\text { SNR shot })^{2}}$.

ATTACHMENT: OLS \#12 PMT channel SNR graph.

2.6 NOISE (Cont'd)

2.6.4 Dark Current (3.2.1.1.6.4)

The Dark Current (the PMT noise with no signal input) is determined from the graph of PMT SNR in paragraph 2.6.3. The Dark Noise SNR is calculated from data gathered during PMT Smoothed Noise measurements. These measurements are made in Test $6 \times 3 \times 1$. ST during Thermal Vacuum testing. For the OLS \#12 bearing retrofit retest, the average Dark Noise SNR of 5 measurements at 8×10^{-9} watts $/ \mathrm{cm}^{2}-\mathrm{SR}$ is 16.2 , or 37.0% of the noise corresponding to an SNR of 6 . The MINIMUM Dark Noise SNR measured at 8×10^{-9} watts $/ \mathrm{cm}^{2}$-SR was 16.0 , or 37.5% of the noise corresponding to a SNR of 6 . This is well within the spec requirement for the dark current to be 50% or less of the noise corresponding to an SNR of 6.00 .

2.6 NOISE, (Cont'd)

2.6.5 Stability (3.2.1.1.6.5) (L - Channel (night)

The OLS 5D-3 System Summary Report contains the analysis for this spec requirement.

The loss in sensitivity after 3 years on orbit of the PMT channel will be < 23%. This would require 2.27 dB change in VDGA gain to compensate and over 17 dB of VDGA gain is available.

ATTACHMENT: None.

2.6 NOISE (Cont'd)

2.6.6 Along-Track Noise Integration (3.2..1.1.6.6)

OLS 50-3 System Summary Report contains the analysis which concludes that the OLS 5D-3 algorithm is consistently above 0.6 times the SNR resulting from perfect integration with 8 bit A / D for T Channel; and above $1 / \sqrt{2}$ times the SNR resulting from perfect integration with 6-bit A/D for L channel. Therefore, the Along-Track Noise Integration is in-spec.

ATTACHMENT: None.
2.6 NOISE, (Cont'd)
2.6.7 Glare Suppression (3.2.1.1.6.7)

OLS 5D-3 System Summary Report contains the analysis which verifies that the OLS does provide effective protection against solar glare for sun angles between 75° and 95°.

ATTACHMENTS: None.

2.7 SURVIVABILITY (3.2.7)

The OLS 5D-3 System Summary Report contains calculations of survivability. See BVS 2353 (Verification of Survivability Requirements) for further details.

ATTACHMENTS: None.

2.8 SCAN ANGLE (3.2.1.1.8)

Tests $6 \times 7 \times 1$. ST and $6 \times 7 \times 3$.ST (End of Scan Vignette for HRD \& T channels respectively) measure the delphi number at which 1% vignetting of scene begins to occur. The measured delphis enable calculation of the altitude needed to obtain contiguous coverage at the equator. The contiguous coverage requirement is based on the average of $+Z$ and $-Z$ scan angles. For OLS \#12, the following results were obtained:

CHANNEL	DELPHI	SCAN ANGLE	CONTIGUOUS COVERAGE ABOVE:	
+Z HRD	+991.2	$+55.97^{\circ}$	$427.09 \mathrm{n} . \mathrm{mi}$.	
-Z HRD	-990.2	-55.91°	$428.25 \mathrm{n} . \mathrm{mi}^{\circ}$	
+Z T	+981.0	$+55.39^{\circ}$	$438.34 \mathrm{n} . \mathrm{mi}$.	
-Z T	-986.0	-55.68°	$432.70 \mathrm{n} . \mathrm{mi}$.	

Thus, both the HRD channel and the T channel meet the requirements for contiguous coverage above 440 naut. mi, since both channels will provide contiguous coverage for all altitudes above 433.38 naut. mi.

ATTACHMENTS: None.

2.9 DATA COLLECTION RATE (3.2.1.1.9)

OLS \#12 does scan the field of view at the prescribed $11.88+/-$. 12 Hz rate. This parameter is measured in Scanner Functional tests $5 \times 12 \times 1$. ST (Primary Side) and $5 \times 12 \times 2$.ST (Redundant Side). The test results are summarized below for all TV tests:

Date	Frequency, Hz Redundant	
07-06-91 Optic Limit	11.90	11.91
09-02-91 Hot Limit	11.89	11.89
09-06-91 Cold Limit	11.91	11.90
09-11-91 Orbit Nom.	11.90	11.90

ATTACMENTS: None.

2.10 POWER (3.3.1 and 3.3.2)

Both +28 V and +5 V power is measured and monitored continuously throughout all of the test sequence.

The power required in the 8 Development-Spec-defined modes is tabulated below. The Development Spec Power Profile is measured in test $5 \times 2 \times 11$. ST for modes 1 through 8 and $5 \times 2 \times 2$.ST for mode 0 .

10V power consumption was not tested on OLS \#12. The current system test equipment is not capable of monitoring 10 V power. Analysis of the components using S/C supplied 10 V power indicates that 5D-3 10V power consumption is in spec.

DMSS-OLS-300 limits 28 V power consumed for SSS thermal control to 23 watts maximum. SSS heater power consumption was not measured on OLS \#12. Analysis of the heater resistances and tolerances indicates that 5D-3 SSS heater power consumption is in spec.

OLS \#12 28 V power consumption is in spec for all modes in the primary and redundant configurations. Fallback (dual power) configuration power consumption is also in spec. See the attached table for further details.

ATTACHMENTS: OLS \#12 Power Profile

OLS \#12 POWER PROFILE

SINGLE POWER				DUAL POWER	
MODE/LIMIT	$\begin{gathered} \text { TV } \\ +5 /-8 \\ 07-04-91 \\ \hline \end{gathered}$	$\begin{gathered} \text { TV } \\ \text { HOT LIMIT } \\ 09-01-91 \\ \hline \end{gathered}$	$\begin{gathered} \text { TV } \\ \text { COLD LIMIT } \\ 09-06-91 \\ \hline \end{gathered}$	$\begin{aligned} & 28 \mathrm{~V} \\ & \text { LIMIT } \end{aligned}$	WORST CASE (CALCULATED)
0 88W	53	53	53	131W	88
1 105W	82	82	81	148W	117
2116 W	88	89	88	159W	124
3 125W	95	96	93	168W	131
4 157W	131	131	128	200W	166
5167 W	137	139	135	210W	174
6 198W	166	167	162	241W	202
7 207W	178	180	172	250W	215
8 218W	185	187	178	261W	222
$\begin{gathered} 5 \mathrm{~V} \\ \text { MODE/LIMIT } \\ \hline \end{gathered}$					
0 4.3W	3	3	3		
1 4.3W	3	4	3		
24.3 W	3	4	3		
3 4.3W	3	4	3		
4 4.3W	3	4	3		
5 4.3W	3	4	3		
64.3 W	4	4	3		
7 4.3W	4	4	3		
8 4.3W	3	4	3		

2.11 MASS

2.11.1 Total Mass (3.4.1)

The weights of all OLS \#12 components were not measured as part of bearing retrofit. The data taken on 12-03-86 during the original OLS 12 selloff are provided for reference. The tape recorder and encrypter serial numbers are those belonging to the system at OLS \#12 sell-off and may change.

All Westinghouse furnished parts meet their center of gravity specification limits and their maximum specified weight allocation. All Typical encrypters exceed the spec limit in center-of-gravity. The encrypters are GFE to WEC and their weight and C.G. are not controlled by WEC.

The total weight of the OLS \#12 AVE is 291.01 pounds, (less BBX's, but including GSSA/DOC \& Test Cable), vs. a spec limit of 298 pounds.

ATTACHMENT: OLS \#12 Weight and Center-of-Gravity Tables
TABLE 1
WESTINGHOUSE FURNISHED PARTS SUPPLIED WITH OLS 12 SYSTEM

			\bar{x}			γ			I					
unit	SER．no．	SPEC	MPR	ACT	SPEC	MPR	ACt	SPEC	HPR	Act	$\begin{aligned} & \text { MAX* } \\ & \text { SPEC } \end{aligned}$	$\begin{gathered} \text { MPR** } \\ \mathrm{W} / \mathrm{OCONT}^{2} \\ \hline \end{gathered}$	$\begin{aligned} & \text { HPR** } \\ & { }^{\prime} \text { COMS } \end{aligned}$	ACt
sss	5007	1．8土．5	1．8さ．5	1.86	6．2土．5	6．2土．5	6.10	$0.7 \pm .5$	$0.7 \pm .6$	0.59	59.0	53.29	54.35	54.64
SPS	5007	$3.0 \pm .5$	3． $0 \pm .5$	2.94	13．8¹．0	13.8 ± 1.0	13.76	$8.6 \pm .8$	8． $6 \pm .8$	8.56	70.0	68.15	69.50	69.00
SPU	5007	3．0土．5	3．0．$\pm .5$	3.00	6．6さ． 5	6．6さ． 5	6.55	6． $0 \pm .5$	$6.0 \pm .5$	5.84	18.0	17.00	17.34	17.32
PSU	5007	2．3土． 5	2．3．5	2.78	$7.0 \pm .6$	7．0土． 6	6.72	$7.2 \pm .5$	7．2£． 5	7.15	27.0	25.60	26.10	26.31
OSU	5007	$1.2 \pm .25$	$1.2 \pm .25$	1.27	4．0さ． 5	$4.0 \pm .5$	4.35	3．0£． 5	3． $0 \pm .5$	2.72	4.0	3.47	3.53	3.52
GSSA／DDC	5007	4．2さ．5	4．2 $\pm .5$	4.11	$+0.1 \pm .3$	$+0.1 \pm .3$	0.15	2．4土 ． 5	2．4土． 5	2.37	9.0	7.83	7.99	8.10
PR1	040	3．45さ． 25	3．45さ． 25	3.29	$6.36 \pm .25$	6． $36 \pm .25$	6.13	4． $23 \pm .25$	4．23£． 25	4.14	22.75	21.14	21.57	21.46
PR2	041	3．45t． 25	3．45土． 25	3.38	6．36さ． 25	6．36 $\pm .25$	6.38	$4.23 \pm .25$	$4.23 \pm .25$	4.28	22.75	21.14	21.56	21.44
PR3	042	3．45さ． 25	3．45土． 25	3.32	$6.36 \pm .25$	6．36 .25	6.19	4． $23 \pm .25$	4．23£． 25	4.29	22.75	21.14	21.56	21.40
PR4	043	$3.45 \pm .25$	3．45£． 25	3.40	$6.36 \pm .25$	6．36 ± 25	6.28	4．23土． 25	$4.23 \pm .25$	4.30	22.75	21.14	21.56	21.33
cables	（1）	－	－	－	－	－	－	－	－	－	22.0	20．88	21.30	20.49
test														
cable	（2）	－	－	－	－	－	－	－	－	－	6.0	6.0	6.0	6.0
＊DMSS－DLS－300，SCN 011． 20 Nov． 1987 ＊＊503 Mass Properties Report， 18 Hov． 1988														
											298	286.78	292.36	291.01

TABLE 2
government furnished parts supplied with ols 12 SYSTEM

2.11 MASS (Cont'd)

2.11.2 Component Mass (3.4.2, 3.4.3)

The mass of the individual components of the OLS \#12 AVE are tabulated below.

Component	Spec	Measured
SSS	59.0	54.64
SPS	70.0	69.00
SPU	18.0	17.32
PSU	27.0	26.31
OSU	4.0	3.52
GSSA/DOC	9.00	8.10
PRI	22.75	21.46
PR2	22.75	21.44
PR3	22.75	21.40
PR4	22.75	21.33
BB1	3.67	3.62
BB2	3.67	3.66
BB3	3.66	3.72
Cables	32.00	20.49

The cable figure does not include Special Sensor cables which are not supplied by WEC.

2.12 COOLER TRANSIENT MARGIN (3.2.2.5)

The T channel cone cooler transient cooldown cooling capacity margin is tested by the file $7 \times 7 . S T$. An external power supply provides $1 / 2$ Watt of heating to the outer stage of the cooler during a normal cooldown. On OLS \#12 bearing retrofit, cone cooler S/N 024 successfully reached its operating set-point with $1 / 2$ watt of external power applied, demonstrating the required margin.

ATTACHMENTS: None

2.13 DESIGN FEATURES

The following design features of the 5D-3 OLS are addressed in the analyses. The analyses are contained in the OLS 5D-3 System Summary Report. The requirements of the Design Features are met or exceeded in each category.

SUBJECT
DESIGN INTERFACES
RELIABILITY
WEAROUT/CONSUMPTION
STORAGE
CONTAMINATION CONTROL
CORROSION OF METAL PARTS
MAINTAINABILITY
INTERCHANGEABILITY

SPEC. PARA.
(3.1.2)
(3.2.3)
(3.2.3.3)
(3.2.3.4)
(3.2.3.5)
(3.2.3.6)
(3.2.4)
(3.3.5)

ATTACHMENTS: None.

2.14 REDUNDANT AND FALLBACK SUBSYSTEMS (3.2.3.1 \& 3.2.3.2)

Paragraph 3.2.3.1 of the development spec requires the OLS to incorporate the following redundant subsystems:
(1) Along-Scan Gain Control
(2) Main Bus Power Supplies
(3) Data Processors
(4) Memories
(5) I/0 Interfaces
a.
Bus Controls
b.

I/O Controls
c.

S/C Interfaces
d.

WOW/Flutter Signals/Clock Drivers
e.

Drive Motor Controls
f.

Sensor Controls
g.

Gain Controls
h.

Encoder Processors
(6) Data Channels
a.
Smooth Video Filters
b.
Fine Video Filters
c.
d.
SDS Channel
e.
SDF Channel
f.
RTD Channel
g.
Special Sensor Processors
h.
Output Data Multiplexers
(7) Output Switching Unit Oscillator and Clock Circuits
(8) Digital Tape Recorders - (Three of Four Required)
(9) Output Data Channels - (Three of Four Required)

Paragraph 3.2.3.2 requires the OLS to incorporate the following fallback subsystems:
(1) IMC Shut-Off Mode.
(2) HRD - Detector Single Segment Select, with associated electronics.
(3) T-Detector Single Segment Select, with associated electronics.
(4) Digital Generation of Delphi Scanner Clock.
(5) PMT Shut-Off Mode

Redundant and fallback subsystems are verified by test during the normal test flow either by repetition of the relevant test on the alternate subsystem (in the case of a redundant subsystem) or by tests designed to verify the specific subsystem (in the case of a fallback subsystem). In each case, any out-of-specs or anomalies are reported as part of the relevant Test Report paragraph.

The following enviromental requirements are addressed in analyses and are contained in the OLS 5D-3 System Summary Report. The Thermal Vacuum (except CHA), Random Vibration, and shock requirements are verified by the sucessful completion of the approved Test Procedure.

The 5D-3 Environmental requirements of the Development Specification are met or exceeded by the OLS \#12 AVE.

SUBJECT	SPEC. PARA
GROUND ENVIRONMENT	20.2 .1
LAUNCH ENVIRONMENT	20.2 .2
THERMAL VACUUM (CHA)	20.2 .2 .1
ACCELERATION	20.2 .2 .5
CHARGED PARTICLE ENVIRONMENT	20.2 .2 .6
LAUNCH PRESSURE PROFILE	20.2 .2 .8
ACCOUSTIC FIELD	20.2 .2 .9
TRANSPORATION \& HANDLING ENVIRONMENT 20.2 .3	

ATTACHMENTS: None.

2.16 ELECTROMAGNETIC COMPATABILITY (3.3.2)

OLS \#12 EMC testing was conducted per Westinghouse documents BVS 2049 (Block 5D-3 Electromagnetic Compatability Test Plan) and T928546 (Block 5D-3 Electromagnetic Interference Test Procedure) during the original OLS \#12 testing. This testing was conducted in two phases. Phase one consisted of testing with the BTM SSS in the unpowered launch configuration on $3 / 4 / 85$ thru $3 / 9 / 85$. Phase two consisted of testing using the OLS \#12 system conducted 8/22/85 thru 8/29/85. The results of this testing are reported separately in Volume V of the original Qualification Test Report. A summary of the EMC test results is included in table 2.16.1 - EMC Test Results. OLS \#12 meets all DMSS-OLS-300 EMC requirements.

ATTACHMENTS: Table 2.16.1 - EMC Test Results

TABLE 2.16.1

ELECTROMAGNETIC COMPATABILITY

TEST RESULTS

| Test | T928546
 Test Procedure
 Section | Data Complete | Result |
| :--- | :---: | :---: | :--- |$|$| Expose unpowered |
| :--- |
| BTM SSS with all
 covers and room
 Temperature T
 Detector
 installed to 200
 V/m for 5 minutes |

3.0 INTERFACE SPECIFICATION REDUIREMENTS

Electrical Interface parameters are measured in the OLS Detailed Electrical Test (T927989) and the OLS Special Sensor Detailed Electrical Test (T927992). These tests demonstrated conformance with all applicable Interface Specification requirements. The only Interface related system measurements that vary significantly from system to system are the SSS Alignment axes which are included here.

3.1 SSS ALIGNMENT AXES

The OLS \#12 SSS Reference Plane axes are within the specification allowances. The results of system test and calculation are given below. The designations are those in Interface Spec IS-YD-810, para. 3.2.7ff.

SECONDARY REFERENCE AXES

 IO PRIMARY AXES
SECONDARY REFERENCES AXES

$X_{R-p}=0.764 \mathrm{mrad}=158 \mathrm{arc} \mathrm{sec}$ TO MOUNTING (INTERFACE) AXES
$Y_{R-P}=0.467 \mathrm{mrad}=96 \mathrm{arcsec}$ $Z_{R-p}=0.626 \mathrm{mrad}=129 \mathrm{arc} \mathrm{sec}$ $X_{R-M}=0.780 \mathrm{mrad}=161 \mathrm{arc} \sec$ $Y_{R-M}=0.496 \mathrm{mrad}=102 \mathrm{arc} \mathrm{sec}$ $Z_{R-M}=0.658 \mathrm{mrad}=136 \mathrm{arcsec}$

These are within the specification limits of 600 arc seconds. The Mounting (Interface) Axes to Primary axes are also calculated, using the computer program REFPLN and are given below:

$$
\begin{aligned}
& X_{\text {H-P }}=0.027 \mathrm{mrad}=67 \mathrm{arc} \mathrm{sec} \\
& Y_{\mathrm{H}-\mathrm{P}}=0.272 \mathrm{mrad}=56 \mathrm{arc} \mathrm{sec} \\
& Z_{\mathrm{M}-\mathrm{P}}=0.270 \mathrm{mrad}=56 \mathrm{arc} \mathrm{sec}
\end{aligned}
$$

These are within the specification limits of 120 arc seconds.
olsfRICuTIOM

J．Spengler
M．Barrett
5．Nichols
M．Little
R．Bark
R．Rum
P．Kiefer
V．Williams
6．Pollock
B．Spencer
R．Lieske
ل．Scilipoti

BUS 2579
－DATE 05 November 1991 ORIGINATOR 2 APPROVED，Q\＆RA RUB， APPROVED，ENGRG

REVISION

APPENDIX A

BEARING RETROFIT
 AND RETEST PLAN FOR ILS 12 THRU 16

Support and Services Contract No．F04701－90－C－0028

Prepared for
UNITED STATES AIR FORCE Headquarters，Space Systems Division

Los Angeles，California

Prepared by
WESTINGHOUSE ELECTRIC CORPORATION Defense and Electronics Center

Baltimore，Maryland

REVISION SHEET \& NOTES PAGE

NOTICE: Unless otherwise instructed, the marked-up pages showing actual changes incorporated in a new Rev. will be maintained in the BVS Master File for future reference and the remainder of the document will be discarded when the new Rev. is filed.

$\begin{aligned} & \overline{\text { REVISION }} \\ & \text { LETIER } \\ & \hline \end{aligned}$	$\begin{gathered} \text { REVISION } \\ \text { DATE } \\ \hline \end{gathered}$	AFFECTED PAGES	$\begin{aligned} & \text { REVISION } \\ & \text { MADE BY } \end{aligned}$
A	4/6/90	1,2,*3-6, 7-11,*12, 13-16,*17-20, 21, 22	J. SMUTKO
B	8/7/90	1, 2, 16, 16a	D. OMETZ
C	8/26/90	-1, 2, 16b, 17	J. SMUTK0
D	9/21/90	$1,2,5,6,18,21$	G. POLLOCK
E	2/20/91	1, 2, 17-23	R. BARK
F	2/28/91	1,2,17	R. BARK
G	5/20/91	22, 23	M. BARRETT
H	5/22/91		M. Barrett
J	6/28/91	1-3, 22-23	SCILIPOTI
k	8/29/91	$1-2,18,22-23$	SCILIPOTI
L	11/05/91	$1,2,23,24$	G. POLLOCK

(* INDICATES PAGE \# IS ONLY CHANGE TO THAT PAGE)

Notes:
WP51 \JSm01.di

1.0 INTRODUCTION

This document describes the detailed rework and test verification plan for replacing the oscillating assembly bearings in the SSS with new bearings having improved lubrication (Ny 188B).

Included are step-by-step instructions, with check-off lines for all inspection, mechanical, optical and electrical test operations.

2.0 REFERENCES

This document references the following Westinghouse procedures:
$9 R A 3681$ SSS Assembly Procedure
$9 R A 4026$ SSS Handling Procedure
9TA9354 Mechanical Operations for SSS Oscillating Assembly Bearing Retrofit

T927002 SSS/DME Compatibility Test Specification
T927686 OLS System Acceptance Test Procedure
OLS Program Directives:
PD 024
PD 026
PD 027
PD 030
PD 044
PD 045
PD 055
SQL 0735 Vibration Procedure

3.0 REWORK AND TEST PLAN FOR ILS:

\qquad
Δ 3.1 Charge labor for this effort to the Block 5 Support and Services contract. Present G.0. number, valid thru 9/30/91, is 53741. Task assignments are as follows:

BAAA Non-recurring Engineering
BABA OLS-12
BALA OLS-14
BALA OLS-15
BALA OLS-16
Material and Travel G.0. is 53742.
3.2 The modification is accomplished by working revision notice G931B. This consists of replacing the two bearing pairs in oscillating Assembly 623R765.

Special instructions have been written to supplement the ANs and describe the mechanical operations necessary to retrofit scanner bearings after an SSS has been fully assembled, see 9TA9354.
3.3 For those systems in the field, return the system to WEC, Baltimore for rework and retest. Follow all applicable handing procedures including Program Directives 024, 026 and 027. As an option, the PSU and SSS only may be returned if another system is available to support the retest effort.
3.4 INCOMING INSPECTION AND SYSTEM TESTS.

OPERATION
Unpack
Record serial nos. of reed. units:

Attach copy of incoming
DD1149 to this BVS for control purposes

WEC Receiving Inspection
AFPRO Inspection

Baseline Electrical Tests - Deleted

3.5 OPTICAL ALIGNMENT BASELINE MEASUREMENTS

Prior to bearing retrofit certain optical tests must be performed in order to accumulate baseline data with which to compare readings taken after the work is completed. This is necessary so that alignment integrity can be verified after the SSS has been partially disassembled and reassembled. These tests will be the same as some of the tests performed in 9RA3681 "Assembly and alignment procedure SSS assembly". However, there may be slight differences in technique because the assembly status of the SSS will not be exactly the same as in the normal building sequence. The steps herein, then, will be excerpts from that procedure and all step numbers referred to will be taken from 9RA3681.

Data should be noted in the applicable flight log book and used for post retrofit alignment comparisons.

In order to perform the necessary tests, the PMT and HRD detector must be removed. The spring assemblies must also be tied in order to permit positioning of the telescope.

STEPS FROM 9RA3681 TO BE PERFORMED

STEPS

VERIFICATION DATE
"Adjustment of optical alignment, test and integration facility" prepares the facility for required tests.
"SSS assembly mounting procedure" Mounts the SSS to the test facility reference interface for testing.
"Alignment of the oscillating assembly rotating axis with the Moore table axis." - positions the SSS for optical measurements.
"Mounting interface alignment measurements" - Determines SSS reference axis position in relation to the OATIF mirrors/SSS mounting interface.

A test will be performed to determine the position of the HRD detector prior to removal as follows:
Clamp a Gaertner bench microscope to the T / T table aligning the microscope reticle with the T/T reticle. Observing the HRD detector through the microscope, center the reticle on at least 2 corners of each segment of the detector. Note the $\mathrm{T} / \mathrm{T} \mathrm{Y}$ and Z axis positions for each point observed.

"Oscillating assembly transmission test" - Determines \% transmission of telescope prior to retrofit.

Inspect mirror M1 to determine if a scatter test should be performed. If, on inspection, Ml appears very dirty perform a scatter test per step 19 of 9RA3681.

$30 \cdot+40$

STEPS FROM 9RA3681 TO BE PERFORMED

STEPS
20.4 "HRD detector alignment check" - checks alignment of the HRD in relation to the ORA field splitter. Illumination via the PMT light as described in step 20.4 .5 should not be necessary. If the light from the T/T point source is insufficient to view the HRD the PMT must be removed prior to performing step 20.4.

Before proceeding remove the HRD and PMT if still installed. Mount the PMT and HRD reticles.
14.2 to 14.3 "M1 centering test" - verifies that the optical beam is centered on M1 prior to retrofit.
16.1.1 to
16.1.4, 16.1.10, \& 16.1.19 to 16.1.26
16.2.1 to 16.2.4, 16.2.11, 16.2.20 to 16.2.27, \& 16.2.29
15.2.2 to 15.2 .7 \& 15.2.16 to 15.2.18
15.2.19.6 to 15.2.19.8
"T-Cal alignment..." Determines proretrofit T-Cal end of scan position. Make no adjustments.
"T-Clamp alignment..." - Determines pereretrofit T-Clamp end of scan position. Make no adjustments. "Encoder optics alignment" - Deter facet from 15.1.15 referred to in steps 15.2 .6 and 15.2 .7 will be assumed to be facet 8 .

Defines minimum allowable voltages and angular displacement on the faceted

VERIFICATION DATE
 ring:

STEPS

VERIFICATION
DATE
15.3.1 to "Encoder nadir adjustment" - Determines 15.3.6 Note: Make NO adjustmint in
15.3.6
15.3.12
15.4.1 to 15.4.26

Omit steps
15.4.18, 15.4.19, 15.4.20 \& 15.4.23
15.5

Note: Make
NO adjust-
mints in
15.5.12,
15.5.13 or
15.5.16
15.6 .1 to 15.6.3
15.9

Note: Make NO adjustmint in 15.9.13 or 15.9.16
"SSS Preparation for primary aux. encoder alignment." - Prepares SSS for testing of primary aux. encoder.
"Primary aux. encoder alignment" Performs tests to determine electrooptical position of the primary aux. encoder.

"Back-up auxiliary encoder alignment."

"Encoder nadir alignment error" -
Provides a formula for determining nadir alignment error.
"Encoder linearity and signal amplitude measurements." - Determine pre-retrofit position for facets of the encoder W / R to the target translator. In steps 15.4.17, 15.4.22 and 15.4 .25 only a sampling of the numbered pulses shall be taken. Sample pulses 15,60 , 97 and 142.

- Determines pre-retrofit electrooptical position of the back-up aux. encoder.

STEPS FROM 9RA3681 TO BE PERFORMED

15.1.1 to
15.1.15 Omit step 15.1.14
"Faceted ring angular measurements" - Determines optical positions of the facets of the polygon ring. In steps 15.1.4, 15.1.8, 15.1 .10 and 15.1.13 where the step refers to specific facets, it shall be required to perform the procedure only on a sample of the facets. A facet shall be chosen at the beginning, the middle and as near to the end as can be seen. Perform the procedure on facets 1,8 and 14 if these are accessible. Step 15.1.14 will be omitted and in step 15.1.15 the facet closest to the mean facet Y axis reading will be assumed to be facet 8.

Cover the HRD and PMT reticles and ORA parts with lens tissue. Data should be noted in the applicable flight log book and used for post retrofit alignment comparisons.

$100 c t a$

3.6 MECHANICAL OPERATIONS

Perform the operations outlined in 9TA9354. This procedure describes all the mechanical operations necessary to retrofit scanner bearings after an SSS has been fully assembled. This step-by-step procedure includes check-off lines for each operation and inspection point.

Following completion of the procedure, attach the working copy of $9 T A 9354$ to this BVS.

Verification of completion
Inspection

1-.78-91
$2 / 22 / 91$

3.7 OPTICAL RE-ALIGNMENT

Optical Tests after Bearing Retrofit
After the bearing retrofit certain optical tests from 9RA3681 must be performed both for comparison to baseline tests as well as to ensure the unit is ready for integration tests. The bulk of these post bearing retrofit tests are the same as the optical baseline tests discussed in section 3.5. Record data in the applicable system SSS log book.

In order to perform the necessary tests, the PMT and HRD detector must be removed. The spring assemblies must also be tied in order to permit positioning of the telescope.

STEPS FROM 9RA3681 TO BE PERFORMED

VERIFICATION
DATE

8.0 | "Adjustment of optical alignment, |
| :--- |
| test and integration facility"- |
| prepares the facility for required |
| tests. |

9.0 "SSS assembly mounting procedure" Mounts the SSS to the test facility reference interface for testing.
11 "Alignment of the oscillating assembly rotating axis with the Moore table axis." - positions the SSS for optical measurements.
"Mounting interface alignment measurements" - Determines SSS reference axis position in relation to the OATIF mirrors/SSS mounting interface.

20 NaCl 96

20 Nous 90
13.0 to 13.3, "M3, M5 and M5 Mask Alignment" -
18
"Oscillating assembly transmission test" - Determines \% transmission of telescope.

20 Now. 90
Inspect mirror Ml to determine if a scatter test should be performed. If, on inspection, Ml appears very dirty perform a scatter test per step 19 of 9RA3681.

201604.90

BUS 2579

STEPS
"HRD detector alignment check" - checks
alignment of the HRD in relation to the
ORA field splitter. Illumination via
the PMT light as described in step
20.4 .5 should not be necessary. If the
light from the T/T point source is in-
sufficient to view the HRD the PMT must
be removed prior to performing step
20.4.
Before proceeding remove the HRD and PMT if still installed. Mount the PMT and HRD reticles.
14.2 to 14.3 "Ml centering test" - verifies that the optical beam is centered on M1.
"T-Cal alignment..." Determines T-Cal end of scan position. Make no adjustments.
"T-Clamp alignment..." - Determines T-Clamp end of scan position. Make no adjustments.
16.1.1 to
16.1.4, 16.1.10, \&
16.1.19 to 16.1.26
16.2.1 to 16.2.4, 16.2.11,

VERIFICATION

DATE 16.2.20 to 16.2.27, \& 16.2.29

LeA

20110190

STEPS FROM 9RA3681 TO BE PERFORMED

STEPS FROM 9RA3681 TO BE PERFORMED

STEPS
VERIFICATION
DATE

3.7.1 PMT ASSEMBLY SPECTRAL RESPONSE STABILITY CHECK - OLS-16 Only

With the PMT assembly removed during the optical re-alignment, a check of the PMT spectral response will be performed to check spectral stability for any evidence of a shift since the last PMT spectral response made on 07/30/88.

The test will be performed in accordance with T-361A88, test paragraph 9.12 - Spectral Response and Effective Sensitivity.

STEPS TO BE PERFORMED

STEPS

Inspection of PMT (Damage Verification)

Install in Transport Case

Spectral Response Test from T-361A88, Para. 9.12
Inspect PMT prior to SSS Installation for Damage
Reinstall PMT on SSS
Inspection (W \& DPRO)
3.7.2 THERMAL BLANKET UPGRADE PER ECP-25-OLS-16 only

In place of the thermal blanket hardware originally installed on OLS-16, install the following oscillating assembly insulation covers and

In pla 0LS-16, ins insulation:

540R561G01
540R561G02
540R562H01
54OR562HO2
540R563HiO1
Inspection
-16a-
BVS 2579

3.7 .2 (Cont'd.)

Install ECP-25 upgraded bracket on the 1A8 HRD/PMT Postamplifier Assembly as follows:

STEPS

Remove the cover assembly, 644R288, from the HRD/PMT Postamplifier, 644R220 located on the SSS Be careful not to disturb the potentiometer adjustments. It may be necessary to cut the RTV used to stake the potentiometers if it has adhered to the cover.

On the cover assembly, 644R288G01, replace mount 522R838GO1 and 432R269G01 with items 16 and 17 respectively on the Thermal Blanket Retrofit drawing, 765R630. (540R564G01 and 540R584GO1) Re-mark the cover assembly to 644R288G02.

Inspect modified cover
Inspect 644R220, OK to reinstall cover, WEC \& DPRO Install modified cover on 1A8 postamplifer

Inspection

(Note - retest of 644R220 postamplifier not required, will be tested at system level).

VERIFICATION
DATE

3.8 SSS TEST PER T927002

Disconnect SSS main cable connector lA9P2

2/6/91
Perform the test procedures of T927002 including 50 hour bearing confidence test, scanner centering, scanner frequency, and limit switch adjustments if required. It is not necessary to repeat paragraph 4.16, T detector bias current measurement.

Reconnect 1A9P2
Data Review
Inspection

*3.8.1 Perform encoder optics ambient funtignal test per T927002, paragraph 4.12.4 JS TECH (Done 2/21/91)
*3.8.2 Apply additional adhesive to encoder optics assembly per RN GL54D. DATE $2-27-91$ G.J. 5 . MANN
 INSP

NOTE: Note after 24 hours the $5 S S$ may be removed from the handling fixture and installed on the base plate/test block.
*3.8.3 Seven day cure at room temperature.
DATE COMPLETE $3-4-9$
*3.8.4 Reinstall cover and torque screws to 4 to $6 \mathrm{in} / \mathrm{lbs}$.
G.JS. MANUF

INSP
$3-8^{2}-91$
DATE

*3.8.5 Repeat step 3.8.1
TECH JJ, DATE

*NOTE: FOr OLS 16 perform this action after completion of paragraph
3.13 of this BVS.
3.9 AMBIENT SYSTEM TESTS

QUICKTESTN.ST
QUICKTESTR.ST
6X2X1.ST
AHCIIPT.ST - R
APCIIPT.ST - P
AHSFBIIPT.ST - R
6X3X1.ST - P
6×3X2.ST - R
$6 \times 3 \times 5 . S T-R$
MHClIPT.ST - R
6X5X1.ST - P
6X7X1.5T
6X7X2.ST
6X9.ST
7X8.ST
Data Review

VERIFICATION DATE

STEPS

3.10 THERMAL VACUUM ADJUST

Deleted
3.11 VIBRATION - SSS Only

Inspection per PD045
checkpoint 3a checkpoint 3b

Notify AFPRO Warved per $5 . k$ info.

Vibrate SSS, 3 Axis, acceptance level per 1927686 para. 3.5

WEC Inspection per PD 055
AFPRO
PD 045 Checkpoint \#4

3.12 POST-VIBRATION, AMBIENT

Perform the test procedures of T927686 paragraph 3.6 except delete paragraph 3.6.5 and in paragraph 3.6.3, only the following test files need to be run:

NOMINAL CONFIGURATION TESTS

REDUNDANT CONFIGURATION TESTS

A Execute $6 \times 2 \times 3$.ST by entering "DSK $6 \times 2 \times 3.5 T$ ". When the operator is prompted for the P2S job to be executed, enter "DSK TSTABILITY.ST".

In paragraphs 3.7.5.1.1, 3.7.10.3, 3.7.11.3, and 3.7.12.2, delete the following test files -
$5 \times 2 \times 16 \quad B B$ Signature
$5 \times 4 \times 1,2,3,4 \quad$ Core Tests
5X8X1,2 DMDM
$5 \times 10 \times 1,2,3,4 \quad$ Output Data Switching
5X14×1,2,3,4 SSP Formatter Tests
5×16×1,2,3,4
A/D Tests

Add a one day nominal temperature T channel stability test between the two soak cycles by performing the following at approximately 2 hour intervals:

Execute $6 \times 2 \times 3 . S T$ by entering "DSK $6 \times 2 \times 3$.ST". When the operator is prompted for the P2S job to be executed, enter "DSK TSTABILITY.ST".

Delete paragraph 3.7.12.6.7

Add a day at the beginning and a day at the end of the nominal temperature piateau for additional T channel stability by performing the following at approximately 2 hour intervals:

Add a day at the beginning and a day at the end of the nominal temperature plateau for additional T channel stability by performing the following at approximately 2 hour intervals:

Execute $6 \times 2 \times 3.5 T$ by entering "DSK $6 \times 2 \times 3.5 T$ ". When the operator is prompted for the P2S job to be executed, enter "DSK TSTABILITY.ST".

SPS Coax Connector repair on JIO due to defective female contact per NR 20250959.

- Remove top cover. of SPS
- Remove 2 P.C. boards - A241 \& A242
- Remove 540 R913G01 cable
- Remove coax connector J10 and replace

Remove coax connect
with new connector

- Circuit check
- WEC Insp.
- OPRO Insp.

Verify a minimum of 500 hours of scanner operation with new bearings has been performed in vacuum. Any deficiency should be made up at this time.

VERIFICATION
DATE

Verify completion of Thermal Vacuum

- OK to reinstall 913 cable in SPS
- Reinstal1 boards A241 \& A242
- OK to cover Insp.
- WEC Insp.
- DPRO Insp.
- Install cover
- WEC Insp.
- Reinstall buffer connector

3.16 Due to male contact pin damage on cables 644R329G02 and G03, replace OLS-12 cables with OLS-14 cables.

3.17 Final Ambient

For 0LS-16 perform additional adhesive operation pr RN GL54D prior to final ambient. See paragraph 3.8.1 thru 3.8.5.

For OLS 12 only perform the following post coax connector repair tests:

NEWONI.ST
QKTESTN.ST
5X10X1SS.ST
NEWON2.ST
QKTESTR.ST
5X10X2SS.ST
Perform T927686 paragraph 3.8, Final Scan Plane Definition.

Perform T927685 paragraph 3.9, Inspection, Data Review, and Preparation for Shipment except Delete paragraph 3.9.2, Weight and Center of Gravity.

Pin Retention
Inspection
Data Review
AFPRO
Pack
Ship


```
OLS PROGRAM DIRECTIVE
```

-CONTINUATION
SHEET-
DIRECTIVE NO. 045

DATE
12/12/88

CHECKPOINT 3.a (Before Vibration) Blue Room

Abstract

A. T channe adjustment tool was removed from PSU per Program Directive \#046. PSU was inspected before and after cover was installed. B. SSS and PSU pots are staked per PS 82560SA.

C. SSS mirrors are staked.
D. Thrust bearing (9RA3893) and limit switch assembly 758R962 have been removed for vibration. Buffer connectors are to remain installed.
INSP

I NOTE 1:
WHEN APPLICABLE,
RECORD ACTIONS
PERFORMED IN SYSTEM
LOG BOOK.

NOTE 2:
"CAUTION"
BUMP, SHOCK,
ABRUPT MOVEMENT
OF TAPE RECORDERS
can cause severe
DAMAGE.
\square

CHECKPOINT 3.b
(Before Vibration, in PQL)

RESP

A. Vibration area is clean and PQL procedures 735 and 737 fallowed.

B. Vibration test equipment is within calibration date.
C. System monitoring equipment is within calibration date.
D. Clean room hats, gowns, masks and gloves are available and in use.

QE


```
NOTE 1:
    WHEN APPLICABLE,
    RECORD ACTIONS
    PERFORMED IN SYSTEM
    LOG 800K.
```

NOTE 2:
"CAUTION"
BUMP. SHOCK,
ABRUPT MOVEMENT
of tape recorders
can cause severe
DAMAGE.

```
OLS PROGRAM DIRECTIVE
```

-CONTINUATION
\qquad
12/12/88

CHECKPOINT \#4
(After Vibration)

		RESP
A. Westinghouse and Air Force post vibration inspection per BVS PD 055 has been performed on all assembles, including GSSA, GSSB and Blankets. (Verify that SSS and PSU pots are staked; or stake per PS 82560SA)	(INSP
B. The thrust bearing (9RA3893) and limit switch assembly 758R962 have been installed for thermal vacuum acceptance test.	$\frac{1}{1}$	MFG INSP
C. Area is clean and contains no miscellaneous parts or extraneous hardware.	15	QE
D. Anti-static mats and wrist straps are in place and ready for use.	\|r+1]	QE
E. Test equipment checked per Program Directive \#O22 less paragraphs IID and IIE. 033	?	QE
F. Perform Test Equipment Operational check per PD 022 , paragraphs IID and IIE.	TiRE	TD
G. The SPS, SPU, PSU, OSU, TCP, Recorders and BB's are interconnected with system cable and ground bus per 9R07845. Handling Procedures 9RA4220, 9RA4225 and 9RA4026 were followed.	PEP	TD

NOTE $1:$

WHEN APPLICABLE, RECORD ACTIONS PERFORMED IN SYSTEM LOG 800K.

```
NOTE 2:
    "CAUTION"
    BUMP, SHOCK,
    ABRUPT MOVEMENT
    OF TAPE RECORDERS
    CAN CAUSE SEVERE
    DAMAGE.
```


Distribution:
J. Spangle
M. Barrett
S. Nichols
B. Ditch
R. Bark
M. Epperly
G. Pollock
R. Baum
B. Spencer
A. Whyms

APPENDIX B

RDS REWORK AND RETEST PROCEDURE

ILS 12
Contract F04701-90-C-0028

Prepared For
UNITED STATES AIR FORCE
Headquarters, Space Division
Los Angeles, California

Prepared By
WESTINGHOUSE ELECTRIC CORPORATION
Electronics Systems Group
Baltimore, Maryland

$$
B-1
$$

REVISION SHEET

WPF EP.lah	PAGE 2	FSCM NO 97942	DOCUMENT NUMBER BVS-2600	REV C

$B-2$

1.0 Introduction

This document describes the detailed rework and retest plan for SPS and OSU units returned from the fieid for incorporation of Real-time Data Smooth. A copy of this document will serve as a checklist for accomplishing the rework and retest procedures.

Incorporation of RDS into an OLS requires the modification of the
following assembijes:
${ }^{9 C}$ and SDF-5 boards in the SPS SPS Matrix Plate
OSU-1 and OSU-2 boards in the OSU
OSU Matrix Plate
OSU Top Cover Assembly
Record Serialization of Units to be reworked here:

Record Assembly Serial Numbers here:

	Prime 9C Board Redundant 9C Board Prime SDF-5 Board Redundant SDF-5 Board	(6518342)(775RO76 or 775R077)(775RO76 or $775 R 077$)(775R078 or 775079)(775R078 or 775R079)	SNSNSNSNSN	$\frac{0001}{5013}$
				5
6408 640 4846				$\frac{5012}{5012}$
				5013
	OSU Mother Plate Assy	(522R783)		
	OSU Top Cover Assy	(644R046)	SN	$\frac{520.000}{50.9}$
${ }_{\text {r2\% }}$	OSU-1 Board	(775R080)	SN	5007
2h603	-2	(775R081)	SN	5007

WPF EP.lah	PAGE 3	FSCM NO 97942	DOCUMENT NUMBER BVS -2600	REV

2.0 Rework and Assembly Retest Plan

2.1 Pre-Rework

Incoming Inspection of Returned Units SPS (651R390) WEC

SPS (651R390) DPRO
OSU (640R960) WEC
OSU (640R960) DPRO

Mfg/Date $\frac{\text { Verification }}{\text { Insp }} /$ Date
$1 / 4 / 41$

2.2 Rework and Inspection

The RN numbers listed below are for reference only - All assemblies should be configured to their latest revision.

System Rework (536R500) GG42D
SPS Chassis Rework (651R390) OLS-12,
OLS-13

SPS Mother Plate Assy Rework (651R342)
OLS-12, 14, $15 \& 16$ GG35D OLS-13 GG700

SPS Matrix Plate Wiring Rework (wiretabs 322R959 or 322R960) OLS-12

GG17D
OLS-13 GG67D
OLS-14 to 16
GG16D
9 C board assy rework (775R076 or 775R077)
OLS-12 GG10D, GG15D \& GG20D
 OLS-13 OLS-14 to 16

GG69D
GG11D, GG15D \& GG21D
SDF-5 board assy rework (775R078 \& 775R079)

OLS-12
OLS-13 OLS-14 to 16

GG08D, GG14D \& GG18D
G668D
GG09D, GG14D \& GG19D

WPF EP.lah	PAGE 4	FSCM NO 97942	DOCUMENT NUMBER BVS-2600	REV -

$R-4$

OSU chassis rework (640R960) S/N 5007, $5009-5011$ GG33D
S/N 5008

Verification

OSU Top Cover Rework (644R046) S/N 5007, 5009-5011 S/N 5008 GG32D GG65D

OSU Mother Plate Rework (522R783) S/N 5007, 5009-5011 GG34D S/N 5008 GG65D

OSU Matrix Plate Wiring Rework (wiretab 322R958)

S/N 5007-5011
GG22D
OSU-1 board assy rework (775R080) S/N 5007, 5009-5011

GG12D, GGI50
GG54A GG5 GG63D

OSU-2 board assy rework (775R081) S/N 5007, 5009-5011 GG13D, GG15D \& GG24D S/N 5008

S/N 5008

WPF EP. lah	PAGE 5	FSCM NO 97942	DOCUMENT NUMBER BVS-2600	REV 8
$8-5$				

2.3 Assembly Level Retest

WPF EP.lah	PAGE 6	FSCM NO 97942	DOCUMENT NUMBER BVS-2600	REV

Room Temperature Retest per paragraph 4.3 of T814A76

Are Coat Data Review
WEC Inspection - OK to Coat

DPRO Inspection - OK to Coat \qquad
Conformal Coat
Eight Non-powered Temperature Cycles
Hi/Low Temperature Test per paragraph 4.7 of T814A76

Data Review Complete \qquad
WEC Inspection - Assembly Complete
DPRO Inspection - Assembly Complete

* open ten on eff for coning oik $2 / 2 / \mathrm{a}$, OK $2 / \mathrm{T} / 91$.

WPF EP.lah	PAGE 7	FSCM NO 97942	DOCUMENT NUMBER BUS -2600	REV -

WPF EP.1ah	PAGE 8	FSCM NO 97942	DOCUMENT NUMBER BVS-2600	REV

$$
R-Q
$$

2.3.4 Redundant Side SDF-5 Retest (775R078/775R079)

Room Temperature Retest per paragraph 4.3 of T814A78
$1 / 26 / 91$
$1 / 31 / 91$

Pre Coat Data Review
WEC Inspection - OK to Coat
DPRO Inspection - OK to Coat
Conformal Coat
Eight Non-powered Temperature Cycles
Hi/Low Temperature Test per paragraph 4.7 of T814A78

1/3191 ME JAMES
$3 / 4 / 91$

Data Review Complete
WEC Inspection - Assembly Complete
DPRO Inspection - Assembly Complete

WPF EP.lah	PAGE 9	FSCM NO 97942	DOCUMENT NUMBER BVS-2600	REV -

B-9

WPF EP.lah	PAGE 10	FSCM NO 97942	DOCUMENT NUMBER BVS-2600	REV -

$B-10$

WPF EP.lah	PAGE 11	FSCA NO 97942	DOCUMENT NUMBER BVS-2600	REV -

B-1/
2.3.7

OSU Assembiy Retest (640R960)

	$S N$S007 Date $2 / 15 / 91$

-2-15-1991
shiclat 4.7 of T814A56

Data Review Complete
WEC Inspection - Assembly Complete
DPRO Inspection - Assembly Complete

* open item \#\% 2/1s/a1g\&K
ind smpar an test.

WPF EP. Iah	PAGE 12	FSCM NO 97942	DOCUMENT NUMBER BVS-2600	REV -

$B-12$
3.0 Subsystem Level Retest Procedure
3.1 Ambient Subsystem Verification Date Verification

Rework Complete - No unexplained Open Items on ICT

Checkpoint A of PD 045 (attach copy)

Run the following Test files (Room Temperature):

NEWONI'SS.ST

- QKTESTN.ST
$5 \times 20 \times 1 \leq 5.5 T$-RDSTETSS.ST
NEWON2SE.ST
QKTESTR.ST

5X18X1SS. ST
5X18X2SS. ST
5X18X3SS. ST
5X18×4SS. ST

3.1.1 Ambient Encrypter Verification

Note: To allow for scheduling and security constraints the ambient encrypter verification may be performed out of sequence, however, paragraph 3.1:1 must be complete prior to starting paragraph 3.3.9, Thermal Cycle \#8.

Instal] the KG-46 data encrypter and KG-28 decrypter. Check out the KG-28 set-up using the ST-19 verification procedure

Run the following test files:
NEWONISS.ST
$9 \times 20 \times 3 \leq 5.57$ ROSTSILSI

WPF EP.lah	PAGE 13	FSCM NO 97942	DOCUMENT NUMBER BVS-2600	REV C

$B-13$

```
OLS PROGRAM DIRECTIVE
```

-CONTINUATION
SHEET-

DIRECTIVE NO \qquad DATE \qquad

CHECKPOINT \#A
(Before Subsystem Test, in Bleck-5 Lean Room, per T927000)
Pol Thermal Clamber
A. Area is clean and contains no miscellaneous parts or extraneous hardware.
B. The antistatic mat and wrist straps are in place and ready for use.
C. Unit and System cable connector pins are checked and none are bent or pushed in. (NOTE: This can be verified at presystem unit inspection and the buffer connectors are inspected and installed at this point per P0034)
D. Verify correct color code on buffer connectors to certify inspected, tested and approved connectors per PD 034 (Appendix B). SPS, SP, PS U, os $4, \downarrow$ CA ACES
E. Test equipment configuration checked per Program Directive \#cz less paragraphs I If - and- IE P
F. Perform Test Equipment Operational Check per poozz paragraphs IID and IIE.
G. Review open ICT items on the SPS, SPU, PSU and OSU, and evaluate closure prior to moving to subsystem
 LNG TET. $13 / 2 / 2 / 5$

R

QI
 INSP

INSP

DE

OE
H. TCP, SPS, SPU, PSU and OSU are connected to. system cable connectors and each is grounded to the ground bus per 9RD7845. 065 SYFFEM ders2

1. Item annotated on ICT that units are ready for subsystem test.

TD $P Q L$ 15 OE

NOTE 1:

WHEN APPLICABLE, RECORD ACTIONS PERFORMED IN SYSTEM LOG BOOK.

NOTE 2:
 "CAUTION"

BUMP, . SHOCK, ABRUPT MOVEMENT OF TAPE RECORDERS CAN CAUSE SEVERE DAMAGE.

Page 3 of 14

NEWON2SS.ST
$5 \times 20 \times 455.5 T$ ROSTST.ST
NEWONDI. ST
5×2 ex $355.5 T \cdot$ ROSTSTSS.SF
NEWOND2.ST
$5 \times 20 \times 455.5 T$ ROSTSF.SF

4/25/91
H/25/91
$4 / 25 / 91$
4/25/91
$+/ 25 / 91$
+/25/91

3.2 SPS and OSU Vibration

Note: To allow for scheduling, OSU and SPS vibration may occur before ambient tests per paragraph 3.1. Vibration must be completed prior to starting paragraph 3.3. Later vibrations due to rework or RN incorporation shall be recorded on the units ICT.

Pre-Vib Data Review
WEC Inspection - OK to Vibrate
DPRO Inspection - OK to Vibrate
Vibrate SPS - x-axis, random only 503 acceptance level per PQL737, nonpowered

Vibrate OSU - x-axis, random only 503 acceptance level per PQL737,

WEC Inspection - Post Vib
DPRO Inspection - Post Vib
$\frac{4 / 26 / 51}{4 / 2 \cdot 9}$

3.3 Thermal Test

Checkpoint B of PD-045
(attach copy)
Install Thermocouples (PQL operation)

形

WPF EP.lah	PAGE 14	FSCM NO 97942	DOCUMENT NUMBER BVS-2600	REV C

$B-15$

```
OLS PROGRAM DIRECTIVE
```

(Before Subsystem Thermal Test, in PQL, per T927000)
A. PQL thermal chamber is clean and area contains no miscellaneous parts or extraneous hardware.
B. Assembly and cable connectors (buffered and unbuffered) were checked before cabling up, and no damage was found. (Note: Where buffer connectors are in-place, check the viewable side; do not remove from assembly.) VERIFY COLOR CODE ON BUFFER CONNECTORS PER PD OJ, APPENDIX B.
C. SPS. SPU, PSU and OSU tranported per 9RA4220.

0. Assemblies SPS, SPU and TCP are connected to system cable connectors and each is grounded to the ground bus per 9R07845.
E. Test equipment is in calibration as required in Program Directive, \#O22 less paragraphs IID and IIE. 033

QI
F. Perform Test Equipment operational check per PD -022 paragraphs IID and IIE.

NOTE 1:

WHEN APPLICABLE. RECORD ACTIONS PERFORMED IN SYSTEM LOG 800K.

```
NOTE 2:
    "CAUTION"
    BUMP, SHOCK,
    ABRLPT MOVEMENT
    OF TAPE RECORDERS
    CAN CAUSE SEvERE
    DAMAGE.
```


3.3.1 Ambient Verification

Run the following Test Files (Room Temperature):

WPF EP. 7 ah	PAGE 15	FSCM NO 97942	DOCUMENT NUMBER BVS-2600	REV C

B-17

3.3.2 Thermal Cycle \#1

3.3.2.1 Hot Temperature
Allow chamber air in the vicinity
of the SPS to stabilize at $+50^{\circ} \mathrm{C}$ $+4^{\circ} /-0^{\circ}$ for 2 hours. During this time the OLS shall not have power on.

Run $5 \times 18 \times 15 S . S T$
NEWONI.ST
S×20入/5S.5T ROSSTSISS.SI
Enter CON 042
Enter OLS OFF

3.3.2.2 Cold Temperature

Allow chamber air in the vicinity of the SPS to stabilize at $-10^{\circ} \mathrm{C}$ $+0^{\circ} /-4^{0}$ for 2 hours. During this time the OLS shall not have power on.

$$
\text { Run } 5 \times 18 \times 1 S S .5 T
$$

NEWDNZ. ST
$5 \times 20 \times 255.57$ RESSTSTSS.ST
Enter CON 042
Enter OLS OFF

Date

5/4/91

5/4/91
Iteslar
5/4/01)

Date

Verification Data five

Verification

WPF EP.lah	PAGE 16	FSCM NO 97942	DOCUMENT NUMBER BVS-2600	REV C

R-1R

3.3.3 Thermal Cycle \#2

WPF EP. lah	PAGE 17	FSCM NO 97942	DOCUMENT NUMBER BVS -2600	REV C
$B-19$				

3.3.4 Thermal Cycle \#3

3.3.4.1 Hot Temperature Date Verification Date 但ure

Allow chamber air in the vicinity of the SPS to stabilize at $+50^{\circ} \mathrm{C}$ $+4^{\circ} \%-0^{\circ}$ for 2 hours. During this time the OLS shall not have power on.

Run $5 \times 18 \times 3$ SS. ST
NEWONI.ST
$5 \times 20 \times 155.5 T$ ROSSTSFSS.ST
Enter CON 042
Enter OLS OFF

3.3.4.2 Cold Temperature

Allow chamber air in the vicinity of the SPS to stabilize at $-10^{\circ} \mathrm{C}$ $+0^{\circ} /-4^{\circ}$ for 2 hours. During this time the OLS shall not have power on.

Run $5 \times 18 \times 3$ SS. ST
NEWONR.ST
$5 \times 20 \times 2=5.57$ RDSSTSTS5.ST
Enter CON 042
Enter OLS OFF

WPF EP.lah	PAGE 18	FSCM NO 97942	DOCUMENT NUMBER BVS-2600	REV C

$B-20$

3.3.5 Thermal Cycle \#4

WPF EP.lah	PAGE 19	FSCM NO 97942	DOCUMENT NUMBER BVS-2600	REV C

$$
B-2 \mid
$$

3.3.6 Thermal Cycle \#5

WPF EP. 1ah	PAGE 20	FSCM NO 97942	DOCUMENT NUMBER BVS-2600	REV C

$B-2 Z$

3.3.7 Thermal Cycle \#6

WPF EP.lah	PAGE 21	FSCM NO 97942	DOCUMENT NUMBER BVS-2600	REV C

3.3.8 Thermal Cycle \#7

3.3.8.1 Hot Temperature Date Verification bate nite

Allow chamber air in the vicinity of the SPS to stabilize at $+50^{\circ} \mathrm{C}$ $+4^{\circ} /-0^{\circ}$ for 2 hours. During this time the OLS shall not have power on.

Run $5 \times 18 \times 3 S S . S T$ NEUONI. ST
$5 \times 20 \times 15 S .5 T$ ROSSTSTSS.ST
Enter CON 042
Enter OLS OFF

3.3.8.2 Cold Temperature

Date
Verification
Allow chamber air in the vicinity of the SPS to stabilize at $-10^{\circ} \mathrm{C}$ $+0^{\circ} /-4^{\circ}$ for 2 hours. During this time the OLS shall not have power on.

Run $5 \times 18 \times 3$ SS. ST
$5 \times 20 \times 255.5 T$ ROSSTSTSS.ST
Enter CON 042
Enter OLS OFF

WPF EP.lah	PAGE 22	FSCM NO 97942	DOCUMENT NUMBER BUS -2600	REV C

$R-24$

3.3.9 Thermal Cycle $\# 8$

3.3.9.1 Hot Temperature

Allow chamber air in the vicinity of the SPS to stabilize at $+50^{\circ} \mathrm{C}$ $+4^{\circ} \%-0^{\circ}$ for 2 hours. During this time the OLS shall not have power on.
sliolor

Run the following dual prime Test Files:

WPF EP.lah	PAGE 23	FSCM NO 97942	DOCUMENT NUMBER BUS -2600	REV C

WPF EP.1ah	PAGE 24	FSCM NO 97942	DOCUMENT NUMBER BVS-2600	REV C

$$
R-כ G
$$

Install the KG-46 data encrypter and KG-28 decrypter. Check out the KG-28 set-up using the ST-19 verification procedure.

Run the following test files:
NEWONDI.ST
$5 \times 20 \times 355.5 T$ ROSSTSTSSE.ST
$5 \times 20 \times 455.5 T$ ROSNTSTESE. 57
Enter CON 042
Enter OLS OFF
Remove the KG-46 encrypter and K6-28 decrypter.

3.3.9.2 Cold Temperature

Allow chamber air in the vicinity of the SPS to stabilize at $-10^{\circ} \mathrm{C}$ $+0^{\circ} /-4^{0}$ for 2 hours. During this time the. OLS shall not have power on.

5/ul9,
Run the following dual prime Test Files:

WPF EP. Jat	PAGE 25	FSCM NO 97942	DOCUMENT NUMBER BUS 2600	REV C

－5x12x15S．ST		（1970）	Data new $9 \Leftrightarrow \sin s \pi_{1}$
$\checkmark 5 \times 13 \times 1$ SS．ST	slular	（3m）	و\％simet
－ $5 \times 13 \times 3$ SS．ST	sluelar	（1i6）	Sas stisit
－ $5 \times 14 \times 155.5 \mathrm{ST}$	Slerlar	（3IV）	50． $513 / 9 / 9$
$\checkmark 5 \times 16 \times 155.5 T$	slular	（ $\frac{314}{\text { A }}$ ）	妨 Shasi
－5X17XISS．ST	slular	（14id）	eas 5130，
－3，	NA Geo	12	
$\rightarrow 5 \times 2 \times 155.5 T$	$5(1119)$	（1499）	
－5x2x2SS．ST	571191	等乐）	

Run the following dual redundant Test Files：

WPF EP．lah	PAGE 26	FSCM NO 97942	DOCUMENT NUMBER BVS－2600	REV C

$R-28$

Install the KG-46 data encrypter and KG-28 decrypter. Check out the KG-28 set-up using the ST-19 verification procedure.

Run the following test files:
NEWOND1.ST
$5 \times 20 \times 355.51$ AOSETSTFSE.ST
NEWOND2. ST

Enter CON 042

Turn OLS and TCP OFF, bring chamber from cold to $+50 \pm 10^{\circ} \mathrm{C}$ and allow

$5 / 13 / 91$

5/B2/21 \qquad
to soak for 2 hours minimum to prevent moisture from condensing on units
Return chamber to room temperature
and remove thermocouples and remove thermocouples.
Subsystem Data Review
Subsystem Test Complete
Final WEC Inspection
Final DPRO Inspection

WPF EP.lah	PAGE 27	FSCM NO 97942	DOCUMENT NUMBER BUS -2600	REV C
$B-29$				

BVS 2693

DATE 20 March 1992
ORIGINATOR $\frac{f+f e i l i n=t}{\text { J. Scilipoti }}$
REV \qquad
F/2
OLS \#12 BEARING RETROFIT
ACCEPTANCE TEST REPORT
VOLUME III OF III
ALIGNMENT AND SYNCHRONIZATION CURVES
(CDRL 006A1)

Contract F04701-90-C-0028

Prepared For
UNITED STATES AIR FORCE Headquarters, Space Division Los Angeles, California

Prepared By
WESTINGHOUSE ELECTRIC CORPORATION
Defense and Electronics Center
Baltimore, Maryland

517

TABLE OF CONTENTS

PAGE

1. REFPLN Plots 1
2. Align/Sync Plotted with Respect to REFPLN 4
Alignment - HRD 5

- T. 6
- PMT 7
Synchronization - HRD 8
- T. 9
- PMT 10

3. Alignment/Synchronization For All Modes 12
Alignment - HRD 13

- T. 18
- PMT 23
Synchronization - HRD SDF \& SDS 28
- HRD RTDF \& RTDS 36
- T SDF \& SDS 42
- T RTDF \& RTDS 50
- PMT SDS \& RTDS 52

4. Synchronization Using Backup Encoder \& Encoder Simulator 62
AS Along Scan (Synchronization)
AT Along Track (Alignment)
SD Surface Distance
SDF Stored Data Fine
SDS Stored Data Smooth
RTD F Real Time Data - Fine
RTD S Real Time Data - Smoothed
H HRD Channel
T T(Therma1) Channel
P PMT Channe]
5. REFPLN PLOTS

These are the computer-generated least-squares fits to OLS \#12 HRD and T Channel Stored Data Fine (SDF) Alignment and Synchronization data taken from the final $+5{ }^{\circ} \mathrm{C}$ SSS/ $-8 \cdot{ }^{\circ} \mathrm{C}$ Ml Thermal Vacuum run (Orbit Nominal).

For OLS \#12, data from Thermal Vacuum Runs with M1 $=+12^{\circ} \mathrm{C}$ was also used to take into account any Alignment and Synchronization sensitivity to Ml temperature.

REFPLN is a computer program which generates the Alignment and Synchronization which represents the line-of-sight (LOS) or "look-angles" of the SSS with respect to the mounting (Interface) axes.

The curves are plotted as Error in milliradians from the OLS Interface Axes (essentially the spacecraft PMP axes), vs. ground surface distance along scan from subtrack (Nadir).
(An error of 0.1 milliradian at 450 naut. mi. altitude represents a ground position error of . 045 naut. mi. at nadir.)

OLS\#/2 REFPLN ALIGNMENT

OLS\#12 REFPLN SYNCHRONIZATION

2. ALIGNMENT AND SYNCHRONIZATION FOR ALL MODES AT +5: SSS TEMP PLOTTED WITH RESPECT TO REFPLN

These curves are the difference between the Alignment and Synchronization curves at SSS $=+5 \cdot \mathrm{C}$ (Orbit Nominal) and the REFPLN Plots.

The curves represent the expected angular errors from the line-of-sight (REFPLN) axes for OLS data taken in the various modes of operation at orbit nominal conditions.

The curves were generated by averaging the data at $M 1=-8^{\circ}$ and $M 1=$ +12 . and then finding the difference between the average and the REFPLN.

OLS\#12 REFPLN ALIGNMENT - HRD SDF

-r -

OLS\#12 REFPLN SYNCHRONIZATION - HRD SDF

OLS\#12 REFPLN SYNCHRONIZATION - T SDF

OLS\#12 REFPLN SYNCHRONIZATION - PMT RTDS

3. OLS \#12 ALIGNMENT \& SYNCHRONIZATION FOR ALL MODES

The following graphs are the measured OLS \#12 Alignment \& Synchronization with respect to the mounting (Interface) axes, for the following conditions.

Orbit Nominal (SSS $=+5^{\circ}, \mathrm{Ml}=-8^{\circ}$)
Hot Limits $\quad\left(S S S=+7^{\circ}, M 1=+12^{\circ}\right)$
Cold Limits $\quad\left(S S S=+3^{\circ}, M 1=-8^{\circ}\right)$
Pre Vibration (Acceptance Level)
Post Vibration (Acceptance Level)

SYSTEM 12
IMC-NORM . PMT ALIGN . RTD-S SSS=5. .,M1 = -8., DATE: 913
$\stackrel{\Upsilon}{-}]$ ORBIT

SYSTEM 12 IMC-NORM PMT ALIGN . RTD-S SSS=7..,M1= 12,,DATE: 903. N
-
HOT

IMC-NDRM . PMT ALIGN . RTD-S SSS=3., M1 = -8, DATE: 907

SYSTEM 12 IMC-NORM PMT ALIGN RTD-S

SSS=23.,M1=24 ,DATE: 812

IMC-NORM . PMT ALIGN \quad RTD-S $\quad . \quad . \quad S S S=22, M 1=22$, DATE: 818

 IMC-NORM . HRD . .SYNC . . RTD-F SSS=7..,M1= 12, DATE: 903

 $-\square .4$
$\stackrel{\infty}{\infty}$
$\stackrel{N}{\square}$

SYSTEM 12

IMC-NORM

HRD SYNC
RTD-S
$S S S=7 \ldots, M 1=12$, DATE: $9 \boxed{ }$

- 0.4

$\stackrel{\infty}{\infty}$
1
-1.2

-4.0

SD/100

SYSTEM 12 IMC-NORM T SYNC SDF \quad SSS=5 . . M1 = -8., DATE: 914

\(\xrightarrow{\Upsilon}] \quad \begin{gathered}ORBIT

\end{gathered}\)

SYSTEM 12
IMC-NORM T . SYNC. SDF . . . SSS=3. ., M1 = =-8, DATE: 908

SYSTEM 12 IMC-NORM T . . SYNC RTD-F.....SSS=5 .,M1=-8, DATE: 708

SYSTEM . 12 ...AS . . PMT . . MODE=SS , . SSS =5 . ., M1 =-8 , DATE: 913.

SYSTEM 12 AS . PMT \quad MODE $=S S, \quad S S S=7 \ldots, M 1=12$, DATE: 903

SYSTEM $12 \ldots$ AS \ldots PMT \ldots MODE $=$ SS . . SSS $=3 \ldots, M 1=-8$, , DATE: 907.

SYSTEM . 12 . AS PMT MODE $=S S$, $. S S S=22$, , M1 $=22$, DATE: 818

SYSTEM 12 AS . . PMT MODE $=$ DS , $\quad S S S=5 \quad, M 1=-8$, DATE: 913
$\left.\begin{array}{c}\dot{\sim} \\ \dot{\sim}\end{array}\right] \quad$ ORBIT

SYSTEM . 12 . AS PMT ... MODE=DS , $\mathrm{SSS}=7 \ldots, \mathrm{M1}=12$, DATE: 903

SYSTEM 12 AS . PMT MODE=DS , $S S S=3 \quad, M 1=-8$, ,DATE: 907

SYSTEM $12 \ldots$ AS AMT \quad MODE $=D S, S S S=23, M 1=24$, DATE: 812

SYSTEM 12 AS PMT MODE=DS , $\quad S S S=22, M 1=22$, DATE: 818

4. SYNCHRONIZATION USING BACKUP ENCODER \& ENCODER SIMULATOR

The synchronization accuracy of the backup encoder track \& delphi generator are measured in the HRD SDF mode during acceptance test.

The curve labelled A is taken with I/O X, using the Backup Encoder Control Track and Encoder Deiphi Generation. This curve can be compared to an HRD SDF sync curve using the Primary Encoder Control Track.

The curve labelled B is taken with $1 / 0 \mathrm{X}$, using the Primary Encoder Control Track, and encoder Simulator Delphi Generation. This curve is plotted as milliradians error from Interface Axis vs. Surface distance.

The curve labelled C is taken with I/O Y, using the Backup Encoder Control Track and Encoder Simulator Delphi Generation. This curve is plotted the same as the B curve.

The Bias and Separation constants used for bearing retrofit for OLS \#12 Primary Encoder are Bias $=-22$ and Separation $=-7$. The Backup Encoder constants used were Bias $=-23$ and Separation $=-6$. These constants are operationally adjustable to account for the effects of non-sinusoidal motion of the scanner.

SYSTEM . 12, ,AS/AT,H/T/P, MODE= SDF ,SSS=5 , M1 = -8, DATE: 915
凹.

SYSTEM . $12 ., A S / A T, H / T / P, M O D E=\ldots ., S S S=5 \ldots, M 1=-8$, DATE: 915

SYSTEM. 12, ,AS/AT,H/T/P, MODE $=\ldots \quad, \quad, \quad$ SSS $=5 \ldots, M 1=-8$, ,DATE: 915
$\stackrel{\infty}{\underset{\sim}{f}}\left[\begin{array}{l}\text { ORBIT } \\ \hdashline \text { NOMINAL }\end{array}\right.$

SYSTEM . 12, AS $/ A T, H / T / P, M O D E=S D F, S S S=7 \ldots, M 1=12$, DATE: 905

SYSTEM . 12.,AS/AT,H/T/P, MODE = SDF ,SSS $=7 \ldots, M 1=12$, DATE: 905

SYSTEM 12, AS/AT, H/T/P, MOCE $=$ SDF $, S S S=3 \ldots, M 1=-8$, DATE: 907

SYSTEM . 12, AS/AT,H/T./P,MODE= SDF , SSS $=3 \ldots, M 1=-8$, DATE: 907

SYSTEM . 12, ,AS/AT, $(1) T / P, M O D E=S D F, S S S=5 \ldots, M 1=-8$, DATE: 708

SYSTEM 12, ,AS/AT, ©HTT/P, MODE $=$ SDF , $, S S S=5 \ldots, M 1=-8$, DATE: 708

SYSTEM 12, AS/AT, (H)T/P, MODE $=$ SDF $, S S S=5 \ldots, M 1=-8$, DATE: 708

SYSTEM 12, ,AS/AT,H/T/P, MODE $=5 D F, S S S=5 \quad, M 1=-8$, ,DATE: 915

SYSTEM 12, ,AS/AT,H/T/P,MODE $=\ldots, \quad, \mathrm{SSS}=5, \mathrm{M} 1=-8$, DATE: 915

POST VIB

SYSTEM 12, AS $/ A T, H / T / P, M O D E=\quad, \quad$ SSS $=5 \ldots, M 1=-8$, , DATE: 915

[^0]: 1-11

