8VS _	2414
DATE	9 December 1988
REV	
ORIGINATOR	T. W. Birdsall

F-14

24

OLS #15

ACCEPTANCE TEST REPORT VOLUME I OF IV SUMMARY AND SPECIFICATION REQUIREMENTS

(CDRL 066A2)

Contract F04701-83-C-0048

Prepared For

UNITED STATES AIR FORCE Headquarters, Space Division Los Angeles, California

Prepared By

WESTINGHOUSE ELECTRIC CORPORATION Defense and Electronics Center Baltimore, Maryland

- 61 -

 A second sec second sec

endermarki .

A LAND AND A

P. E.I. 17

.

TABLE OF CONTENTS

				<u>PAGE</u>
1.0	Int	roductio	n	1-1
	1.1	Summar	y of System - Specific Parameters	1-2
	1.2	Specif	ication Pass-Fail Summary	1-5
	1.3	Summar	y of OLS Testing	1-8
	1.4	Config	uration & Serialized Assemblies	1-9
	1.5	Therma] Vacuum Profiles	1-21
	1.6	Test H	istory Calendar	1-25
2.0	Deve	lopment	Specification Requirements	2-1
	2.1	Spectra	a	2-1
	2.2	Geometr	ric Resolution	2-5
		2.2.1	Fine Geometric Resolution - Infrared	2-5
		2.2.2	Fine Geometric Resolution - Daytime Visual	2-43
		2.2.3	Smooth Geometric Resolution - Infrared	2-66
		2.2.4	Smooth Geometric Resolution - Daytime Visual	2-79
		2.2.5	Smooth Geometric Resolution - Nightime Visual	2-92
		2.2.6	Data Sampling	2-105
	2.3	Geometr	ric Accuracy	2-106
	2.4	Radiome	tric Accuracy	2-112
		2.4.1	T Channel Radiometric Accuracy	2-112
		2.4.2	Daytime Radiometric Accuracy	2-171
		2.4.3	Nightime Radiometric Accuracy	2-174
		2.4.4	Gain Control Accuracy	2-176
		2.4.5	Gain Control Adjustability	2-177
		2.4.6	A/D Conversion & Algorithms	2-179

d/07828

a,

.

TABLE CONTENTS (continued)

		PAGE
2.5	Radiometric Resolution	2-181
2.6	Noise	2-183
	2.6.1 T Channel Noise	2-183
	2.6.2 L Channel Noise - Day	2-185
	2.6.3 L Channel Noise - Night	2-187
	2.6.4 Dark Current	2-189
	2.6.5 Stability	2-190
	2.6.6 Along-Track Noise Integration	2-191
	2.6.7 Glare Suppression	2-192
2.7	Survivability	2-193
2.8	Scan Angle	2-194
2.9	Data Collection Rate	2-195
2.10	Power	2-196
2:	2.10.1 28V Power	2-196
	2.10.2 +5V Power	2-196
2,11	Mass	2-198
	2.11.1 Total Mass	2-198
	2.11.2 Component Mass	2-201
2.12	Cooler Transient Margin	2-202
2.13	Design Features	2-203
2.14	Redundant and Fallback Subsystems	2-204
2.15	Environment	2-206
INTE	RFACE SPECIFICATION REQUIREMENTS	3-1
3.1	SSS Alignment Axes	3-2

-ii-

d/07828

3.0

.

BVS 2414 REV -

ŝ,

1.0 INTRODUCTION

The OLS #15 Acceptance Test Report contains the technical data pertinent to the OLS #15 AVE system. This document is intended to present the Acceptance Test data in terms of the requirements of the Prime Item Development Specification (DMSS-OLS-300) and Interface Specification (IS-2298450).

Test results and data have been reviewed by Westinghouse Electric Corporation and USAF representatives. System performance data, test histories, data summaries and system analyses are included. In addition, a complete set of system log books are on file at the contractor's facility and are available for review. The Test History is in log books K40100-- and K40062--.

This Accepta	nce Test Report consists of 4 volumes as follows:
BVS 2414	OLS #15 Summary and Specification Requirements
BVS 2415	OLS #15 Acceptance Vibration Report
BVS 2416	OLS #15 Alignment & Synchronization Curves
BVS 2417	OLS #15 Weight & Center-of-Gravity

d/07828

1-1

0LS #15

TLEVEL VS M1 TEMPERATURE RANGE

T DETECTOR S/N J-1

TL	M1_TEMI	P(°C)
1111	-22.240° to	o −16.952°
1110	-16.952°	-11.665°
1101	-11.665°	-6.377°
1100	-6.377°	-1.089°
1011	-1.089°	+4.198°
1010	+4.198°	+9.486°
1001	+9.486°	+14.773°
1000	+14.773°	+20.061°
0111	+20.061°	+25.349°
0110	+25.349°	+30.636°
0101	+30.636°	+35.924°
0100	+35.924°	+41.212°
0011	+41.212°	+46.499°
0010	+46.499°	+51.787°
0001	+51.787°	+57.074*
0000	+57.074°	+62.362*

TLEVEL command changes should be uplinked to the OLS as a function of M1 temperature to maximize T Channel output accuracy.

d/07828

1-4

BVS 2414 REV -

1

1.2 Specification Pass-Fail Summary

The following sections of this Qualification Test Report contain the test results as they pertain to the Development Specification requirements. Each Test Report paragraph heading is followed by the corresponding Segment Spec paragraph number in parentheses.

The table on the following page summarizes the OLS #15 pass-fail status vs. Development Spec. paragraph number.

d/0782B

1-5

1.3 Summary of OLS #15 Testing

22

Began System Test	2/19/88
Thermal Vacuum T-Channel Adjustment	4/23/88
SPS, PSU, SPU, OSU 3 axis vibration	5/10 & 11-88
SSS 3 axis vibration	5/12/88
Thermal Vacuum Acceptance Test	5/29/88
Completed Thermal Vacuum Acceptance Test	7/10/88
Retest per 8VS 2418	11/3/88
Weight and C of G	11/10/88

1-8

d/07828

1.4 Configuration and Serialized Assemblies

The configuration listing on the following pages includes the current configuration of the OLS #15 as of 10/05/88.

d/0782B

1-9

2 ____ 10 1 225 Incl

5D-3 CONFIGURATION IDENTIFICATION SERIALIZED ASSEMBLIES (OLS 15)

DESCRIPTION	ASSEMBLY NO.	REV.	S/N
Key Drawing	536R500G04	M	
<u>SSS Assembly</u>	758R750G02	U	5010
OSC Assy	623R765G08	AG	5010
HRD Assy	623R754G05	AB	0009
PWR Bd	623R758G04	R	0009
Pre Amp Bd	623R506G04	U	0009
<u>T-Chan</u>	765R048G02	F	5003
T-Chan Bd	762R539G02	С	5003
Module	623R727G01	В	5019
Module	623R727G01	8	5020
<u>VDGA/Lin Log</u>	644R150G05	G	5010
Lin Log	644R127G05	Р	5010
VDGA	644R152G04	Р	5010
VDGA	644R153G04	N	5010
Enc. OPT	688R705H01	C	013
PMT	644R909G05	т	0010
EMR Bd	644R905G03	D	0010
Switch Bd	644R903G05	M	0011
Doubler Bd	644R907G02	F	0010
Regulator Bd	644R807G04	н	0010
Led Assy	536R916G01	D	0010
Pre Amp Bd	644R935G04	М	5011
Tube Assy	640R920G02	J	17
HRD Post Amp	644R220G05	L	5010
Post Amp Bd	644R228G05	AF	5010
EST/LMD	644R219G04	D	5010
EST/LMD Bd	758R142G03	ε	0010
<u>Heater Cont</u>	633R053G13	J	5027
Elect Assy	633R052G04	Y	5027
<u>Heat Cont</u>	633R053G14	J	5028
Elect Assy	633R052G04	Y	5028
<u>Heat Cont</u>	633R053G15	J	5029
Elect Assy	633R052G04	Y	5029
Solenoid Mech	758R620G02	E	5003
Cable Assy	644R320G03	N	502

d/0782B

1-10

OLS 15 (Cont'd)					
DESCRIPTION		ASSEMBLY NO.		REV.	S/N
<u>Heater Cont</u>		633R053G16		J	5030
Elect Assy		633R052G04		Y	5030
<u>Rel Mech I</u>		640R701G02		F	5010
<u>Rel Mech II</u>		640R753G02		Н	5010
Rel Mech III		640R381G02		Н	5010
T-Clamp		623R821G01		Э	
<u>T-Cal</u>		623R920G01		В	
<u>Aux Encd</u>		640R846G05		L	5010
Bd Assy		640R825G05		F	5009
Bd Assy		640R844G05		K	5010
Wire Dia		758R619G02 -		ε	
Wire Tab		318R708		C	
Wire Tab	- 61 -	315R386		C	
Wire Tab		318R709		(-)	
<u>Motor Assy</u>		623R894G01		В	
IMC/M3	10	623R858G02		D	5009
Cover, Cooler		640R320G01		(-)	
Cone Cooler		9RA5216H01		K	027
<u>ENPA</u>		682R215G06		N	5010
A1 Bd		682R167G04		H	5011
A2 Bd		682R110G06		۷	5010
A3 Bd		682R112G04		Т	5010
Aux Encd B/U		682R300G04		С	5010
A1 Bd		682R149G04		E	5011
A2 Bd		682R151G04		Ε	5010
<u>BB1</u>		KG43			
<u>BB2</u>		KG43			
883		KG43			
<u>Ther. Blk. Kit</u>		661R564G03		J	
GSSA/DOC		640R790G03		М	
GSSB		633R906G01		Α	
PR1		688R461H01		E	052
PR2		688R461H01		ε	053
PR3		688R461H01		ε	054
PR4		688R461H01		ε	055
Optical Relay		701R717H01	Per 100 P	А	015

d/0782B

a,

DESCRIPTION	ASSEMBLY NO.	REV.	S/N
Cable Assy	9RA5255H09	V	503
Cable Assy	9RA5255H02	V	501
Cable Assy	9RA5255H04	v	503
Cable Assy	9RA5255H11	v	503
Cable Assy	9RA5255H10	v	502
Cable Assy	9RA5255H12	V	502
Cable Assy	9RA5255H06	v	502
Cable Assy	9RA8118G01	G	
Coax Assy	644R327G01	C	
Coax Assy	644R327G02	С	2 P. 1
Coax Assy	644R327G03	С	
Coax Assy	644R328G01	D	
Coax Assy	644R328G02	D	
Coax Assy	644R328G03	D	
Coax Assy	644R328G04	D	
Coax Assy	644R328G05	D	
Coax Cable	644R328G06	D	
Coax Assy	644R329G01	D	
Coax Assy	644R329G02	0	
Coax Assy	644R329G03	D	
Coax Assy	644R329G04	D	
Coax Assy	644R329G05	D	
Coax Assy	644R329G06	D	
Coax Assy	644R329G07	D	
Coax Assy	644R329G08	D	
<u>SPS</u>	651R390G04	AF	5010
Buss Bar	640R714G01	N	5010
Buss Bar	640R714G02	N	5010
Matrix	651R342G04	AW	8619-0002
<u>R/B</u>	644R665G05	AF	5020
Matrix	644R081G03	Ν	053085/11
Al Bd	640R618G03	G	5023
A2 Bd	640R518G03	R	5021
A3 Bd	640R520G03	R	5020
<u>R/B</u>	644R665G05	AF	5018
Matrix	644R081G03	N	05308/13

1-12

DESCRIPTION	ASSEMBLY NO.	REV.	S/N
A1 Bd	640R618G03	G	5018
A2 Bd	640R518G03	R	5020
A3 Bd	640R520G03	R	5018
CU 1	640R612G03	L	5019
CUI	640R612G03	L	5020
CU2	640R614G03	L	5019
CU2	640R614G03	L	5018
AU 1	640R608G04	F	5020
AU 1	640R608G04	F	5019
AU 2	640R610G04	F	5019
AU 2	640R610G04	F	5021
MCIX	640R560G03	Р	5020
MCIX	640R560G03	Ρ	5021
MC2X	640R662G02	8	5004
MC2X	640R662G02	8	5005
ROM	640R530G03	W	5018
ROM	640R530G03	W	5019
Core	644R910H03	κ	016
Core	644R910H03	K	022
SDS2	640R442G03	U	5018
SDS2	640R442G03	ប	5019
SDS3	640R444G03	Р	5019
SDS3	640R444G03	Р	5018
SDS4	640R446G03	U	5019
SDS4	640R446G03	U	5018
SDS5	640R498G04	т	5018
SDS5	640R498G04	Т	5019
CLSD	640R458G04	AH	5019
CLSD	640R458G04	АН	5018
SDS1X	640R660G03	F	5004
SDS1X	640R660G03	F	5005
FC-1	640R450G03	AC	5018
FC-1	640R450G03	AC	5019
FC-2	640R454G04	AA	5020
FC-2	640R454G04	AA	5021
FC-3	640R456G03	AA	5019

1-13

4

23

DESCRIPTION	ASSEMBLY NO.	REV.	S/N
FC-3	640R456G03	AA	5018
SDF-1	640R474G04	AK	5018
SDF-1	640R474G04	AK	5019
SDF-2	640R476G04	AK	5018
SDF-2	640R476G04	AK	5019
SDF-3X	640R644G03	Α	5007
SDF-3X	640R644G03	Α	5006
SDF-4X	640R646G03	А	5004
SDF-4X	640R646G03	Α	5005
DF-5X	640R648G03	F	5019
OF-5X	640R648G03	F	5018
DS-6	640R650G03	А	5005
DS-6	640R650G03	Α	5004
DS-7	640R546G03	R	5018
DS-7	640R546G03	R	5019
8	640R412G03	R	5019
В	640R412G03	R	5018
Α	640R414G03	AD	5018
A	640R414G03	AD	5019
В	640R416G05	88	5021
В	640R416G05	88	5020
A	640R400G03	AL	5019
A	640R400G03	AL.	5021
В	640R402G03	AF	5018
8	640R402G03	AF	5019
BC	640R448G04	Р	5018
BC	640R448G04	Ρ	5019
AM	640R626G03	D	5004
M.	640R626G03	D	5005
V	640R488G03	AA	5018
4	640R488G03	AA	5019
3	640R410G03	Y	5019
3	640R410G03	Y	5018
<u>ــــــــــــــــــــــــــــــــــــ</u>	640R404G03	AA	5019

1-14

d/0782B

8VS 2414 REV =

OLS 15 (Cont'd)			
DESCRIPTION	ASSEMBLY NO.	REV.	S/N
3A	640R404G03	AA	5018
10X	640R572G03	к	5018
10X	640R572G03	K	5019
CLCL	640R406G05	АН	5020
CLCL	640R406G05	АН	5021
WF-1X	640R664G02	-	5019
WF-1X	640R664G02	-	5018
WF-2	640R432G03	AA	5019
WF-2	640R432G03	AA	5018
WF-3	640R622G03	G	5017
WE-3	640R622G03	G	5019
WF-4	640R436G04	м	5018
WF-4	640R436G04	м	5019
WF-5	640R438G03	AA	5019
WF-5	640R438G03	AA	5018
9A	640R654G02	А	5005
9A	640R654G02	А	5004
98X	640R656G02	С	5005
9BX	640R656G02	С	5004
9CX	640R658G02	-	5005
9CX	640R658G02	-	5004
WF-6	640R568G03	Э	5020
WF-6	640R568G03	J	5019
<u>osu</u>	640R960G04	AF	5010
Matrix	522R783G02	G	0004
A1	640R522G04	V	5009
A2	640R524G03	R	5010
Bottom	644R047G04	V	0010
Тор	644R046G03	V	5010
<u>SPU</u>	758R040G03	Р	5010
Matrix	640R927G03	W	0001
Buss Bar	640R912G01	L	5009
SSP-8	640R638G03	E	5004
SSP-8	640R638G03	E	5005
RTD-1	640R508G04	AL	5018

d/07828

ł.

1-15

OLS 15 (Cont'd)			
DESCRIPTION	ASSEMBLY NO.	REV.	S/N
RTD-1	640R508G04	AL	5019
RTD-2	640R510G04	AV	5019
RTD-2	640R510G04	AV	5021
RTD-3	640R512G03	L	5018
RTD-3	640R512G03	L	5019
RTD-4	640R526G03	Р	5018
RTD-4	640R526G03	Ρ	5019
RTD-5	640R514G03	т	5018
RTD-5	640R514G03	Ŧ	5019
SSP-1X	640R636G02	С	5004
SSP-1X	640R636G02	С	5005
SSP-2	640R462G04	Y	5018
SSP-2	640R462G04	Y	5019
SSP-3	640R464G04	V	5019
SSP-3	640R464G04	v	5018
SSP-4	640R642G02	F	5002
SSP-4	640R642G02	F	5015
SSP-5	640R468G04	V	5018
SSP-5	640R468G04	v	5021
SSP-6	640R470G04	U	5018
SSP-6	640R470G04	U	5019
SSP-7	640R472G04	Y ·	5018
SSP-7	640R472G04	Y	5019
SSP-9	640R554G03	к	5019
SSP-9	640R554G03	к	5020
PSU	758R050G05	АН	5010
Matrix	758R569G01	С	8057/0001
RFI Plate	690R891G01	8	5008
Reg Assy	682R089G03	Р	5007
Misc Bd	756R609G02	D	5001
T-Chan CG	688R483G04	к	5010
T-Left	688R485G04	J	5010
T-Right	688R487G04	J	5010
T-Chan 8U	688R489G04	н	5010

1-16

BVS 2414 REV -

1 j

OLS 15 (Cont'd)

DESCRIPTION	ASSEMBLY NO.	REV.	S/N
T-Ana Fil	688R491G04	к	5018
T-Ana Fil	688R491G04	К	5019
L-Ana Fil	688R493G04	Н	5019
L-Ana Fil	688R493G04	Н	5018
PSU TRA BLK	640R998G05	K	5020
PSU TRA BLK	640R998G05	К	5019
OME	688R481G05	н	5021
DME	688R481G05	н	5020
IMC	644R864G04	G	5010
Relay-1	756R589G02	D	5010
+5V	644R078G04	R	5010
Relay-2	688R502G04	F	5010
+12VDA	688R499G04	۶	5020
+1 2VDA	688R499G04	F	5019
Dual ENPA	640R616G02	J	5010
Relay-3	688R503G04	D	5010
-12V	644R069G04	R	5010
Relay-5	688R505G04	D	5010
Relay-4	688R504G04	D	5010
+12V Vm	688R500G04	D	5010
MC	688R495G04	G	5019
MC	688R495G04	G	5021
СРН	688R497G04	E	5010
Enable	682R381G04	ε	5010
Driver	756R593G02	E	5003

1-17

d/0782B

This page intentionally

left blank

1-18

d/07828

•

BVS 2414 REV -

<u>i</u>.

ŕ

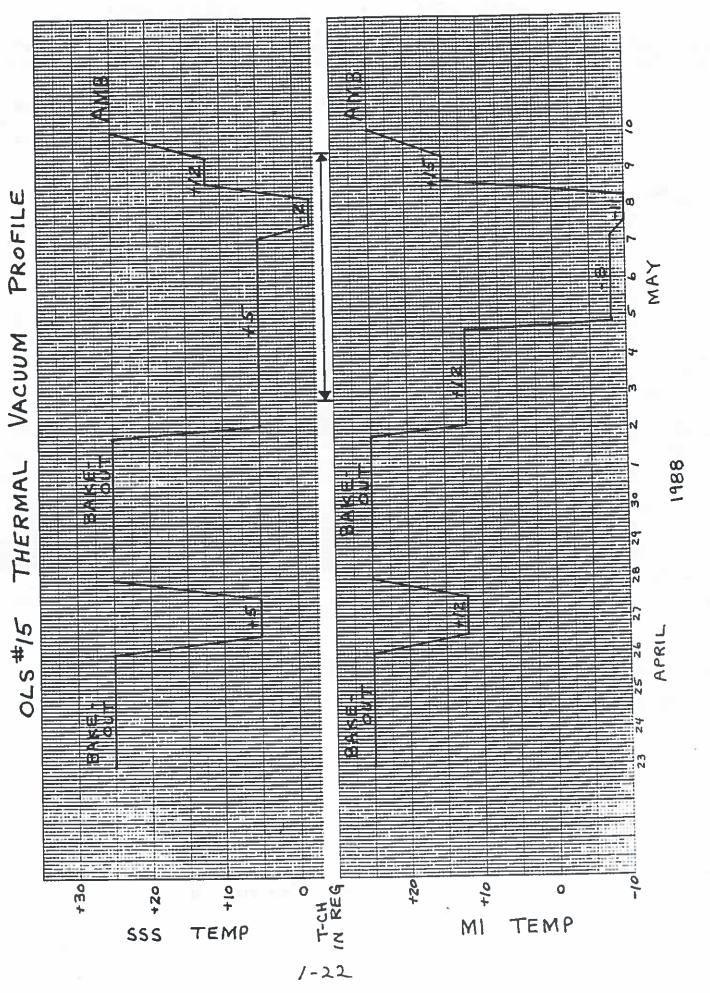
11

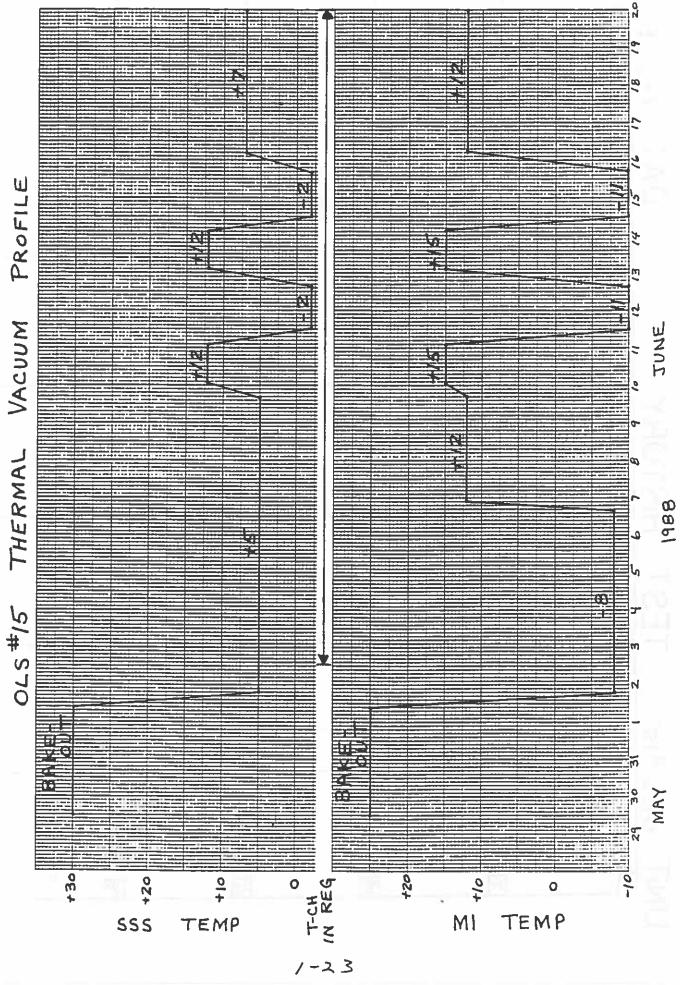
Ł

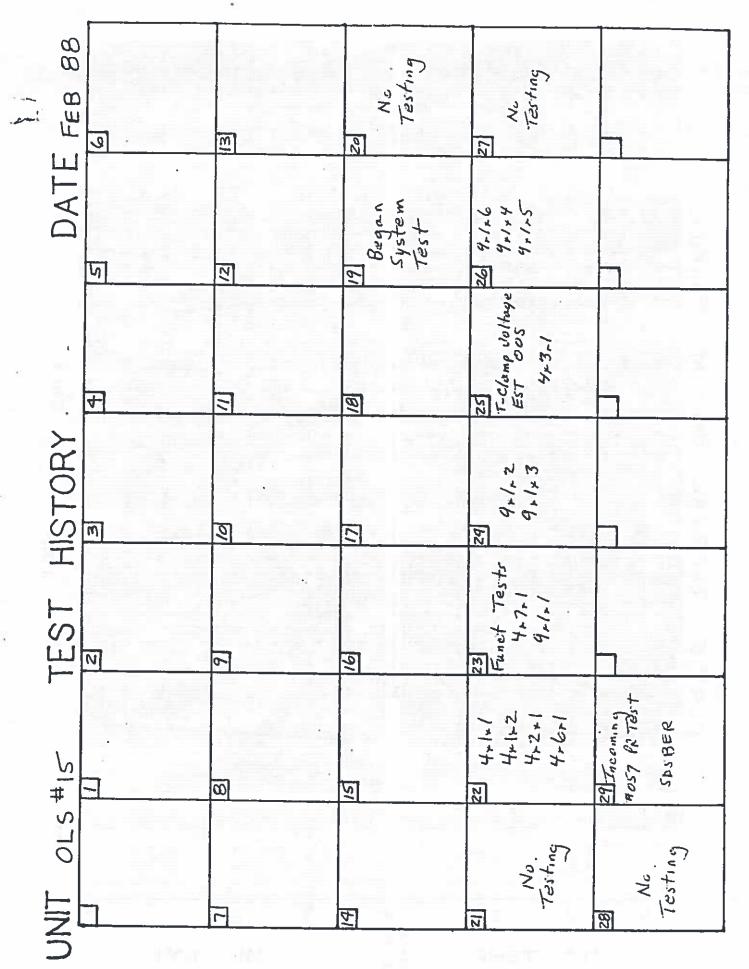
The profiles

iture and M1

This page intentionally


left blank


1-19


BVS 2414 REV -

EV -

182B

.

DATE APR 88	2	Tests	9 Ne.	Tests	16	Tests	E3 Pamp down	72 Hr Buke-out	Q	72 Hr Buke - out	
DATE	0N	Tests	SIMFLT			42421 42421 62521	22 2A129 8 2A329 6ds.	reinstatled in SPS 7-10 7-2		72 Hr Bake-out	
			7 6+3+5 6+7+1 6+7+2 6+9	202		MHC 11 PT AHSF7PT	21 6+3+1 6+3+5 AHCF70T	Funct Tests 9+1+1 6+7+1 6+7+2	MHCIPT 28-7/5 T-Ch pot 29 Adjust Proplem	Adjusted PMT Edge Guin Pots	7×3 7×11 PiempdwindD1845
HISTORY			6 Funct Tests 6-1-1 6-4-1 6-5-1 6-2-2 AHSF 7PT	MHA7PT 7,9 6-3+1 6+3+4 6+6+2	13 System moved to Blue Room because	of MTF problem	20 62521 62325	to TV chamber MHCIIPT 6+55-1	6222 6225 27 6225 27 6225 5	MPA7PT 4+8+1	Beyen Ventury
TEST H]		5 Funct Tests HOTTEST		ut problem	Funct Tests	19 6+2+1 6+3+1 6+3+5	Gain & Freq Gain & Freq MHCIIPT 6+2+1 6+3+1	26 Funct Tests	45/ +12 (01230 7-9 4-13 6-9-7 6-2-1	T ENSEL
OLS # 15	-		the sss installed in chamber	Funct Tests	MPAJPT	Funct Tests	E	AHCIIPT MHCIIPT 62521		72 Hr Bake -out	
UNIT OLS	7		3 No	lests	le Ne	Tests	[2]	Tests	24	72 Hr Bake-cut	

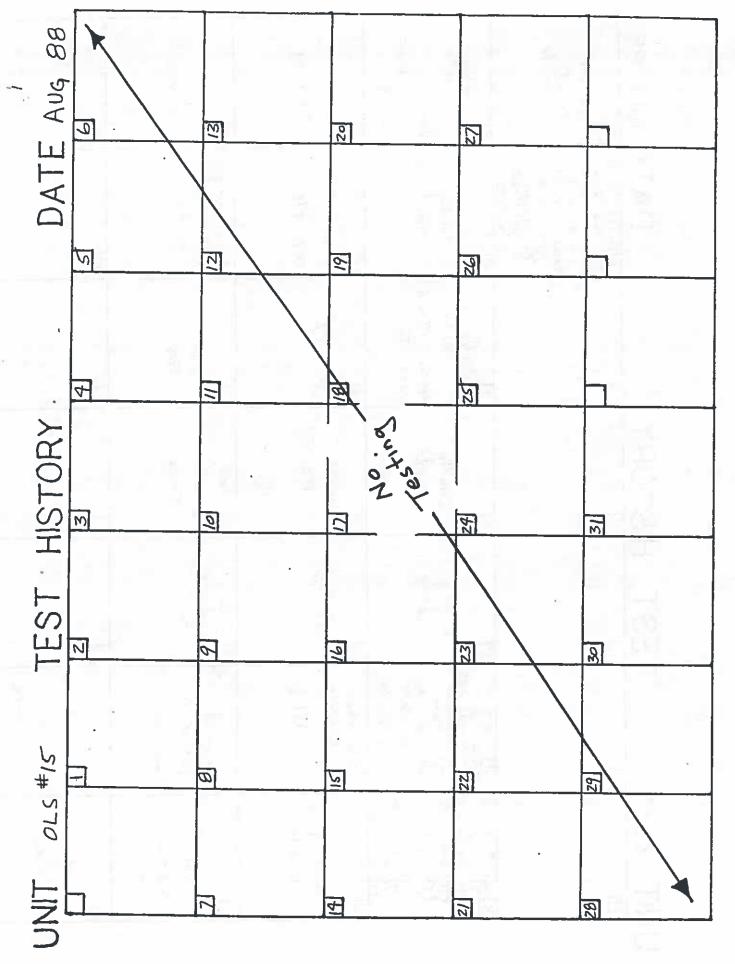
50

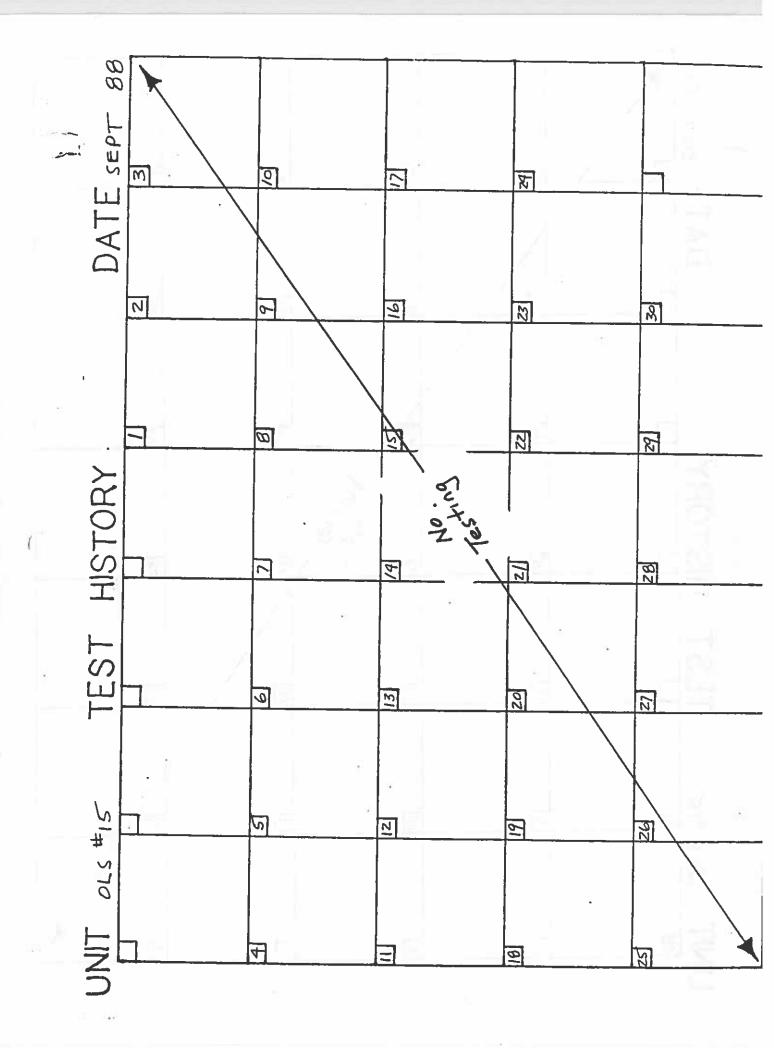
•

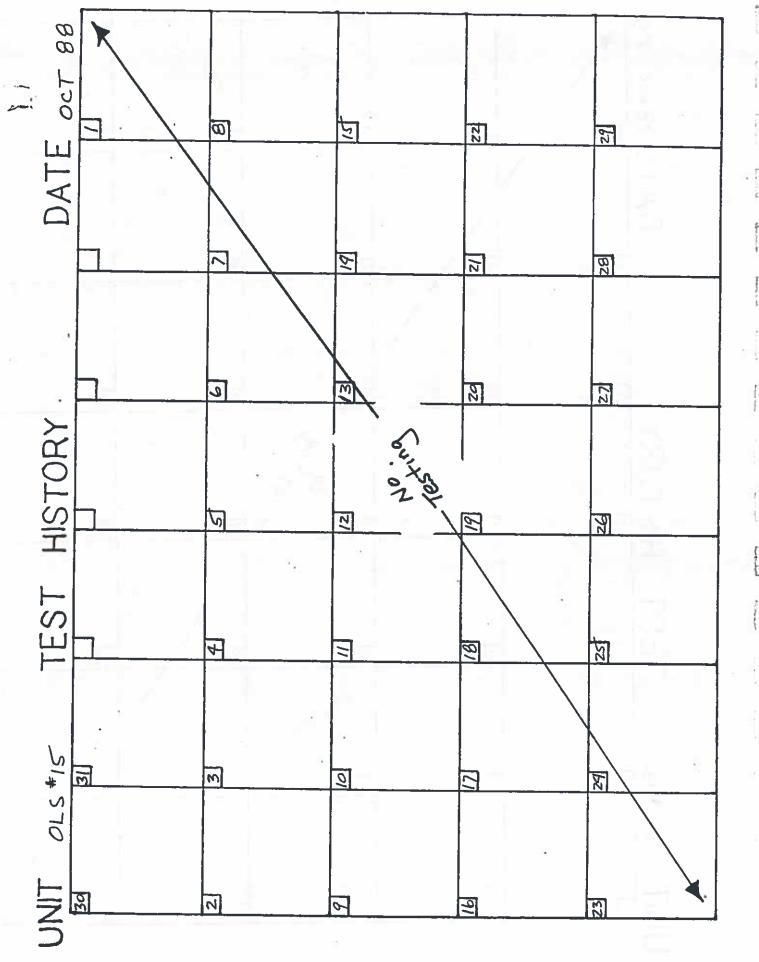
		÷	Ċ	â		
UNIT OLS #15		EST	HISTORY .		DATE	DATE MAY 88
; 	2]+5/HZ 00100 7x7 1041	12 6+5+1 4+8+1 4+8+2 712172310	A7PT A7PT 6+9	STIZITZAIA ASVZIOQ 240 TIZATZZYA	NE S	7 Funct Tests To Cold Soak
Bake-out			6+2+5 6+2+2 6+3+1 6+3+4	Prunct Test bright bright	ASV 210	92/-11 6/100
	T-Ch 11 Reg. (2015	MTC 7PT	100 m	ATSF7PT TIZITZZIA ASVCROSS		T12172318 6210
10 Hot Soak @ 0300	2] SIMFLT	10 System to Blue Room	11 Y-Y 92-2 avis vib of 593	7	13 quicktest	19 STOVALTST
9×1×6 +12/+15@1300	Warn		3 ans vib of	s ackis vio ef 555	STDVALTST 10×1	AHSF3PTT AHSF3PTT AHSF3PTT
T12172318	Chanber Open		nso nas nsa		-* - 1	Funct Tests
TALATAT MPAJAT	16 AHSFB9PT	12 Funct Tests	unct Tests		20 SDS/SDF	2/
N-	1ª	2	switching	T/s. SOF/SOS Switching	Switching	No.
5	6×2~1	4-1-4	SDFIBER	New thrust	יייייייייייייייייייייייייייייייייייייי	1 e5 t3
APC7PT				bearings fulled		-
No.	The TV	· · p	25 6r3, 1 6r2h5 MHA7PT	Funct Tests		28 7+10
Tes t	Tuspection		61 64 3	SIMFLT	runer 10213	Funct Tests
		HHSF7PT 62222	1			1.5 t
	30	31				
Funct lests	72 14-	72 Hr	The second	1		
Fumpolown @ 12 de	Buke-out	Bake - out				
					OX.	

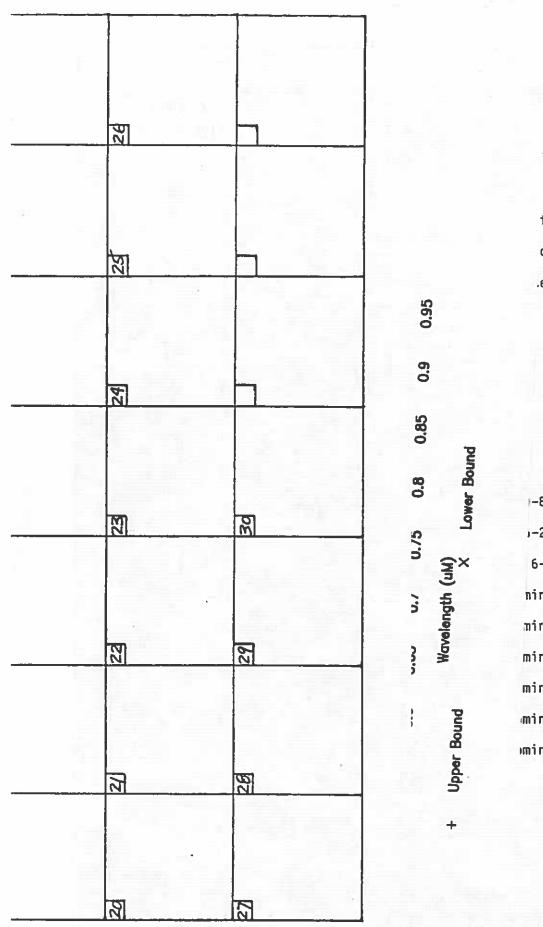
TUNE 88	4 ASV 210 Q TI237229A TI237229A TI257227A W3r4 ASV 270 W3r5 ASV 290	III To Cold Sunk #1 9-1×3 9-1×3 9-1×3 9-1×3 9-1×3 9-2/-11 01225 Funct Tests MPA 707 MTC 707	
DATE JUNE	3 19 = 3 76 = 12 6 = 2 + 3 A 7 6 = 2 + 3 A 7 12 = 7 2 3 19 5 1 M F L T 5 1 M F L T	10 4124150 0100 TIZITZ318 Funct Tests 6x2x2 SIMFLT SIMFLT Asv 210 Asv 210 As	
	L] +5/-8@1900 Z]MHC111PT 7+7 6454 64245 Fund AHSF3 PTT Fest 64642 64243A TOC RM 29	9 6-7-53 Funct Tests T11972208 T00CRM3K T00CRM3C T00CRM3C T00CRM3C	
HISTORY	1 +57-80190 7+7 Funt Test	ELINE ASV MTC7 MTC7 MTC7 MTC7 MTC7 MTC7 ASV ASV ASV ASV ASV ASV ASV ASV ASV ASV	MTC 7 PT 6+3+1 TI2 17231C ASV 210 31C BYENZ 6+3+1 BYENZ 6+3+3 TI22 7230C
TEST H		ZI Must 7 PT AllSF 7 PT AllSF 7 PT AllSF 7 PT Asv 210, 290 31, Arg 210, 290 31, Arg 210, 290 31, 1/2 To 200 3255 -2/-1/6 1200 51 MFL T 7-4A 9-145 7-4A 9-145 7-4A 9-145 7-4A 9-145 7-4A 9-145 7-4A 9-145 7-22 3A 7-4A 9-145 7-22 3A 7-4A 9-145 7-22 3A 7-22 20 3-16 7-24 20 3-16 7-24 7-25 7-27 23 18	Dogst Leve
- 1		A THAT AND THAT A THAT	6+2+2 6+2+2 6+2+5 6+2+5 12+3/-30 13/-30 13/-30 1415
UNIT ols #15		571377221A Asv 210, 310 Fund Tests Anch Tests Anch Tests Anch Tests Anch Tests Anct Tests TriziT2318 6x2x2 SIMFLT To Het Seak #2 SIMFLT To Het Seak #2 SIMFLT To Het Seak #2 MISTRT BAHC7PT Ans Bapt Ans Bapt Ans Bapt Ans Pollet Evilia bullet Evilia bullet Drists to	14.14 10.451-80 1230 9-146 130 Fund Tests

....


ŧ.

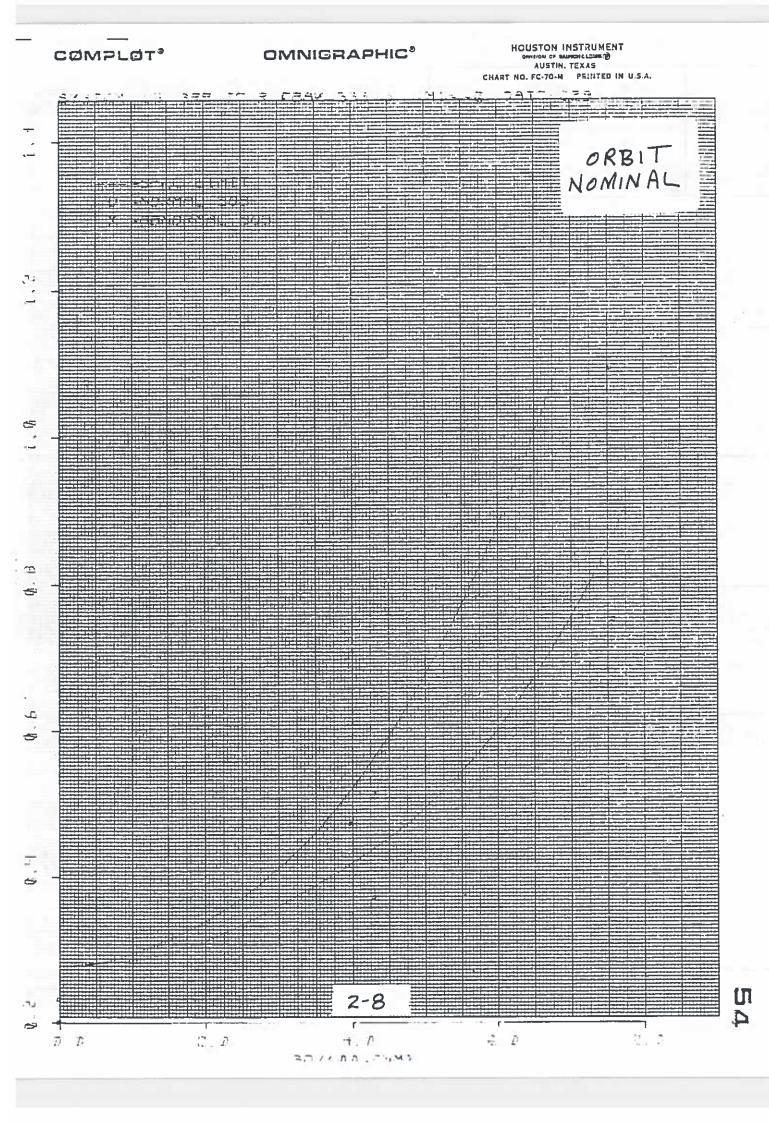

.


.


10.1

		-r		-			<u> </u>	T	
		A I F	Frunct Tests Z Trestrests Z Trestrests ATS7PT Trastreste Trastre Tests DTMOUNLEV SIMFLT	6	Config Tests Venting Chambur	16	simplet No. TCP T/S Testing	22 555 mirrors 23 were cleaned No. 6r 2r 1 Testing	R
		. 16	71.1 6×11-1 77.1 77.1 9×1-1 77.1 77.1 77.1 77.1 77.1 77.1 77.1 7	0	0	15	Tc.	S ZZ S	52
	13 1 12			Z Conflig	Special T-ch MTF Test	/4	2/T 92	Z/ Config Tests	681
(HICTODV	120101	7		Config Test	13	MHCJPT TERDAT	20 728 Config Tests	27
	TENT L	1		5	Config. Tests	21	TCP T/5	19 6×2×1 AHSFUPT 7×5	26
				4 1050 + + 200 112172318 10 +5/+12 20255	+51+126 1000 +51+126 1000 10+51-86 1236 +57-86 1939 Config Tests	11 Chamber	opune oxee TCP Calib. Test	Moved System te Blue Koom	All system Tests are complete
	UI# 3 10 LINII			3 Funct Testr Tizitz319 To +12/-8 10 0430	8(2) 093 7231 8 731 6 731 8 731 8 731 8 731 8		Venting Chamber	Nu Testing	Zd No Testing
		5							C

in the development


2.1)

the Fine Primary on, all .ed. The

-88	
-29-8	8
6-29-	88
ninal	6-29-88
minal	6-29-88

BVS 2414 REV -

311

T, COMPLETE, SRP (NM)

ŧ

	FLT. NO. =	15 ENV. =	4 SSS=	5DEGC M1=	-BDEGC DATE:	629
SEG	SUR. DIST.	TFP	TFB	TSP	TSB	
	(NM)					
LFT	-750.	0. 767	0.756	1. 747	1.748	
MID	-750.	1.317	0.000	1.857	1.859	
RGT	-750.	1.092	1. 087	1. 799	1.800	
LFT	0.	0.000	0.000	0.000	0.000	
MID	0.	0.000	0.000	0.000	0.000	
RGT	Ο.	0.000	0.000	0.000	0.000	
LFT	-431.	0. 373	0. 365	1.452	1.453	
MID	-431.	0. 625	0.000	1.482	1. 484	
RGT	-431.	0.513	0.510	1.462	1.464	
LET	-378.	0. 349	0. 341	1.392	1.394	
MID	-378.	0. 589	0. 581	1. 419	1. 421	
RGT	-398.	0. 472	0. 470	1.405	1.406	
LFT	0.	0.000	0.000	0.000	0.000	
MID	0.	0.000	0.000	0.000	0.000	
RGT	0.	0.000	0.000	0.000	0.000	
LFT	0.	0.230	0. 226	0. 959	0.960	
MID	0.	0.231	0.226	0.957	0.958 0.959	
RGT	0.	0.232	0. 227	0. 958	0. 000	
LFT	0.	0.000	0.000	0.000	0.000	
MID	0.	0.000	0.000	0.000	0.000	
RGT	0.	0.000	0.000	0.000	1. 402	
LFT	398.	0.452	0.451	1. 400	1. 417	
MID	378.	0.566	0. 560 0. 341	1. 373	1.394	
RGT	378.	0. 349 0. 498	0. 496	1. 463	1. 465	
	431.	0. 601	0. 000	1. 477	1. 478	
MID	431. 431.	0. 370	0. 362	1. 451	1.452	
RGT LFT	431.	0.000	0.000	0.000	0. 000	
MID	0. 0.	0.000	0.000	0.000	0.000	
RGT	o.	0.000	0. 000	0.000	0.000	
LFT	757.	1.088	1.083	1.795	1.796	
MID	757.	1. 571	0.000	1. 958	1. 758	
RGT	757.	0. 750	0. 739	1.729	1. 731	

T, COMPLETE, SRP RATIO

SEG	SUR. DIST.	TFP	TFB	TSP	TSB
LFT	-750.	0. 893	0. 880	0, 777	0. 778
MID	-750.	0.000	0.000	0. 826	0.827
RGT	-750.	0.827	0.823	0. 800	0. 801
LFT	-750.	0.000	0.000	0.000	0.000
MID	0.	0.000	0.000	0.000	0.000
RGT		0.000	0.000	0.000	0.000
	0. -431.	0.845	0.826	0.907	0. 908
LFT				0. 926	0. 908
MID	-431.	0.000	0.000	0. 913	0. 727
RGT	-431.	0. 903	0.878		0. 714
LFT	-378.	0.832	0.813	0. 908	
MID	-398.	0.896	0.885	0. 925	0. 926
RGT	-398.	0. 902	0.878	0. 916	0. 917
LFT	0.	0.000	0.000	0.000	0.000
MID	0.	0.000	0.000	0.000	0.000
RGT	Q.	0.000	0.000	0.000	0.000
LFT	0.	0. 837	0. 820	0. 913	0. 914
MID	0.	0. 798	0. 782	0. 912	0. 713
RGT	0.	0.843	0. 826	0. 912	0.913
LFT	0.	0.000	0.000	0.000	0.000
MID	0.	0.000	0.000	0.000	0.000
RGT	0.	0.000	0. 000	0.000	0.000
LFT	378.	0.866	0. 862	0. 913	0. 914
MID	378.	0.862	0.852	0. 923	0. 924
RGT	378.	0.832	0.813	0. 908	0. 909
LFT	431.	0.876	0. 872	0.913	0.915
MID	431.	0.000	0.000	0. 922	0. 923
RGT	431.	0.838	0.817	0. 906	0. 907
LFT	0.	0.000	0.000	0.000	0.000
MID	0.	0.000	0.000	0.000	0.000
RGT	0.	0.000	0.000	0.000	0.000
LFT	757.	0.810	0.806	0. 794	0. 795
MID	757.	0.000	0.000	0.866	0.866
RGT	757.	0.840	0.848	0.765	0.766
1.65.1	137.	V. 64V	V. 040	V. / GU	v. / uu

÷

1

ţ

7

 \mathbf{p}

500 100

おまる 人名

TF, LEFT, PRIMARY

ï

the second s

FLT. NO. = 15 ENV. =	4 SSS= 5DEGC	M1= -BDEGC DATE: 629	
SUR. DIST. (NM) SRP	ACTUAL (NM) S	RP RATIO	
-750.	0. 767	0. 893	
0.	0.000	0.000	
-431. -398.	0. 373 0. 349	0. 845	
0.	0.000	0. 832 0. 000	
0.	0. 230	0. 837	
Ο.	0.000	0.000	
378.	0. 452	0.866	
431.	0. 498	0. 876	
0.	0.000	0.000	
757.	1.088	0. 810	

TF, LEFT, BACKUP

FLT. ND. = 15	ENV. = 4	SSS= 5DEGC	M1= -8DEGC	DATE:	629
SUR. DIST. (NM)	SRP ACT	UAL(NM) 5	RP RATIO		
-750.	0. 7	56	0. 880		
0.	0.0	00	0.000		
-431.	0.3	65	0. 826		
-378.	0. 34	41	0.813		
Q.	O. O	00	0.000		
0.	0. 2	26	0. 820		
0.	0.00	00	0. 000		
378.	0.4	51	0.862		
431.	0.49	76	0. 872		
Ο.	0. 00	00	0.000		
757.	1.08	33	0.806		

TF, RIGHT, PRIMARY

ł.

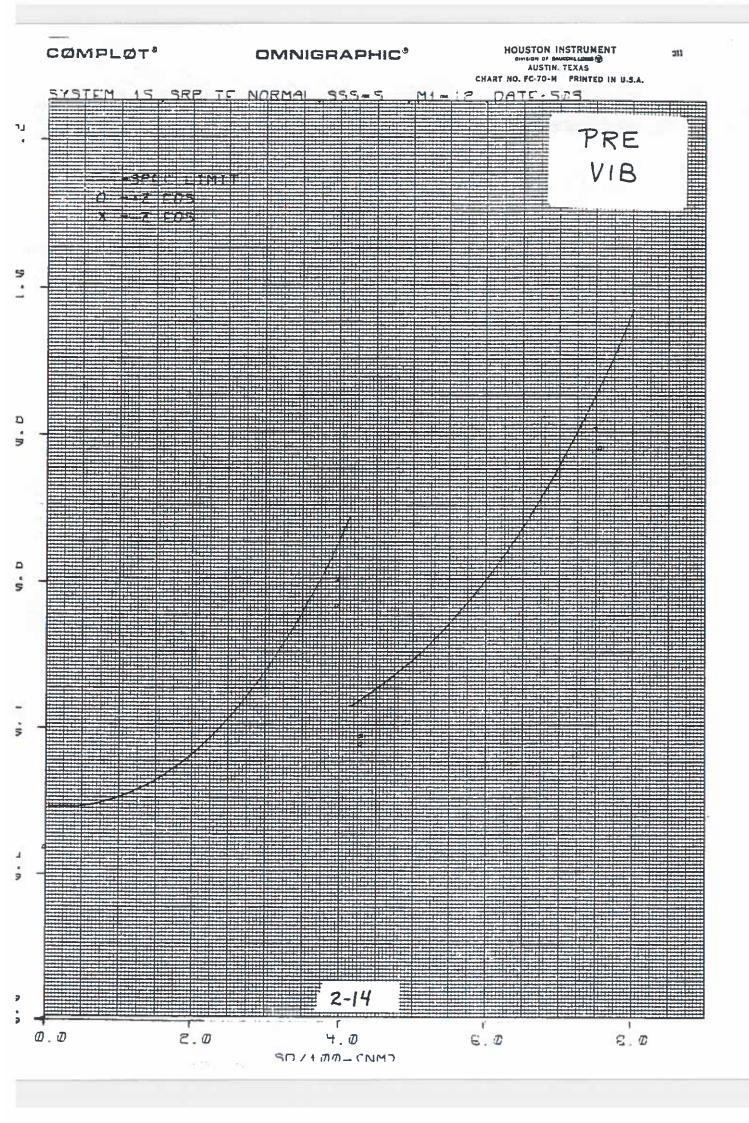
FLT. NO. = 15 ENV. =	4 SSS= 5DEGC	M1= -BDEGC DATE:	629
SUR. DIST. (NM) SRP	ACTUAL (NM) S	RP RATIO	
-750.	1.072	0. 827	
0.	0. 000	0.000	
-431. 000.0	0. 513	0. 903	
-378.	0. 472	0. 902	
0.	0.000	0.000	
0.	0. 232	0. 843	
0.	0.000	0.000	
378.	0. 349	0.832	
431.	0. 370	0. 838	
0.	0. 000	0.000	
757.	0. 750	0. 860	

TF RIGHT, BACKUP

FLT. NO. = 15 ENV. =	4 SSS= 5DEG	C M1= -8DEGC	DATE:	629
SUR. DIST. (NM) SRF	ACTUAL (NM)	SRP RATIO		
-750.	1.087	0. 823		
0.	0.000	0.000		
-431.	0. 510	0.898		
-378.	0. 470	0. 898		
0.	0.000	0.000		
0.	0. 227	0. 826		
0.	0.000	0. 000		
378.	0. 341	0. 813		
431.	0.362	0.819		
0.	0. 000	0.000		
757.	0. 739	0. 848		

C 200

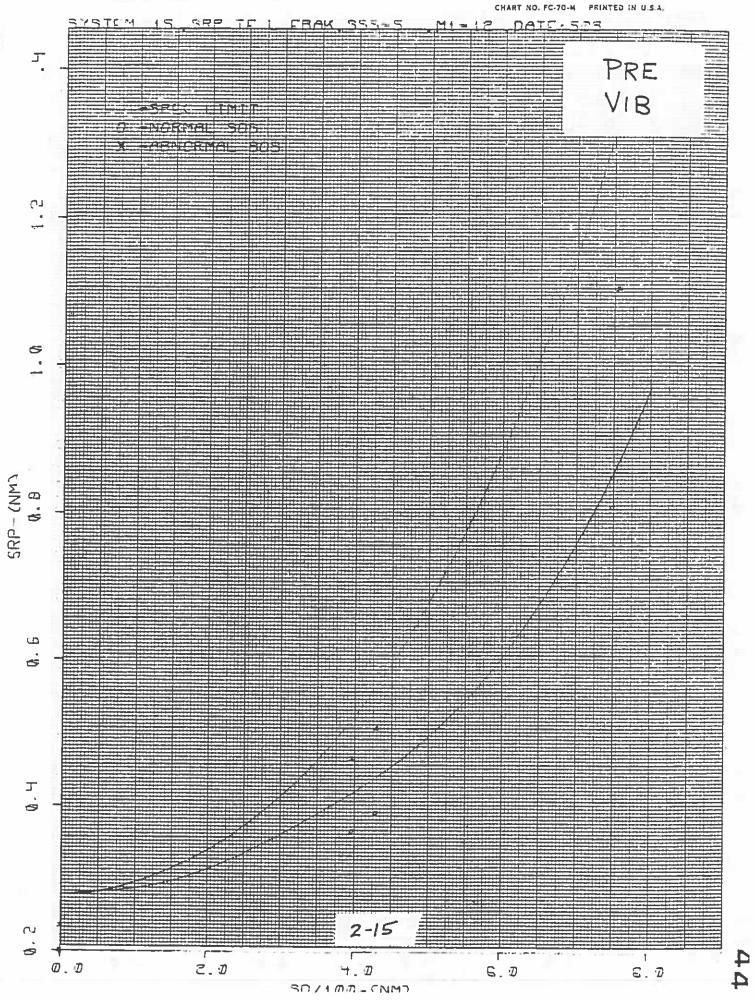
2-12

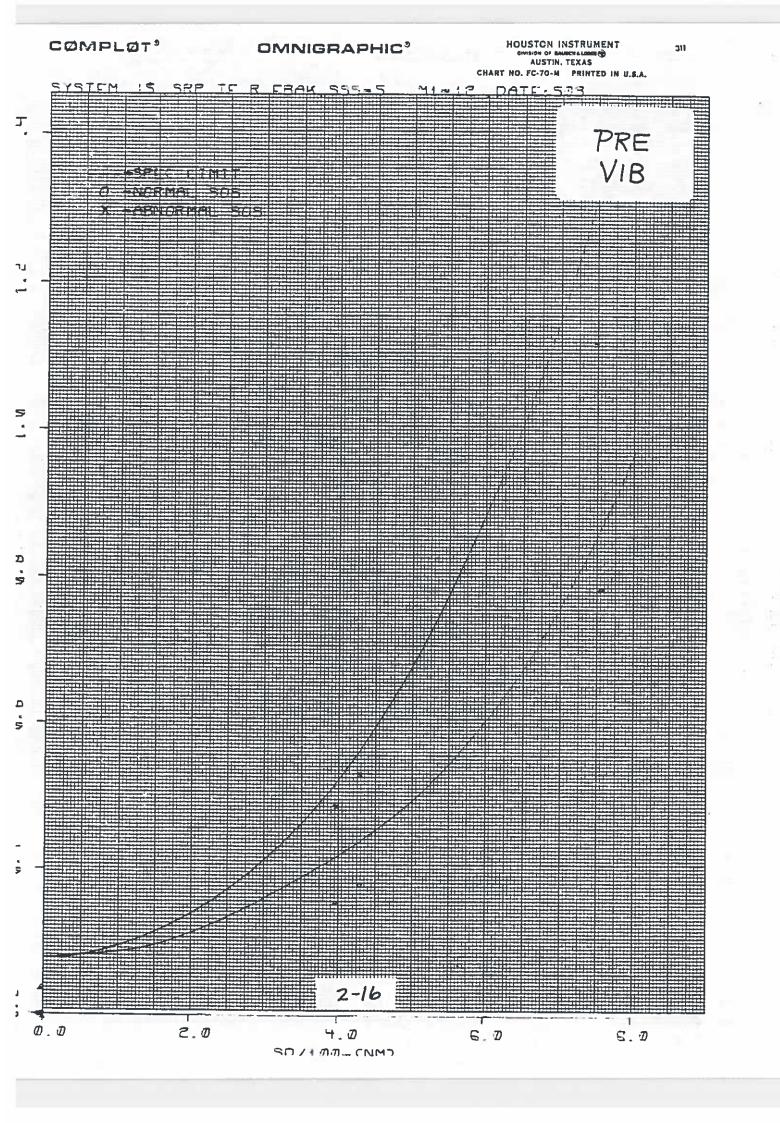

2.2 <u>Geometric Resolution</u> (Cont'd)

2.2.1 Fine Geometric Resolution, Infared (Cont'd.) (3.2.1.1.2.1)

2.2.1.2 Acceptance - Vibration

OLS #15 underwent Acceptance level SSS vibration per DMSS-OLS-300 with Cone Cooler S/N 027 on May 12, 1988. The pre-to-post vibration SRP performance shows no SRP changes attributable to vibration and is shown on the attached curves and tables.


ATTACHMENTS:	TF SRP	Curve Previbration	5-03-88
	TF SRP	Tables Previbration	5-03-88
	TF SRP	Curves Postvibration	6-6-88
	TF SRP	Tables Postvibration	6-6-88



OMNIGRAPHIC[®]

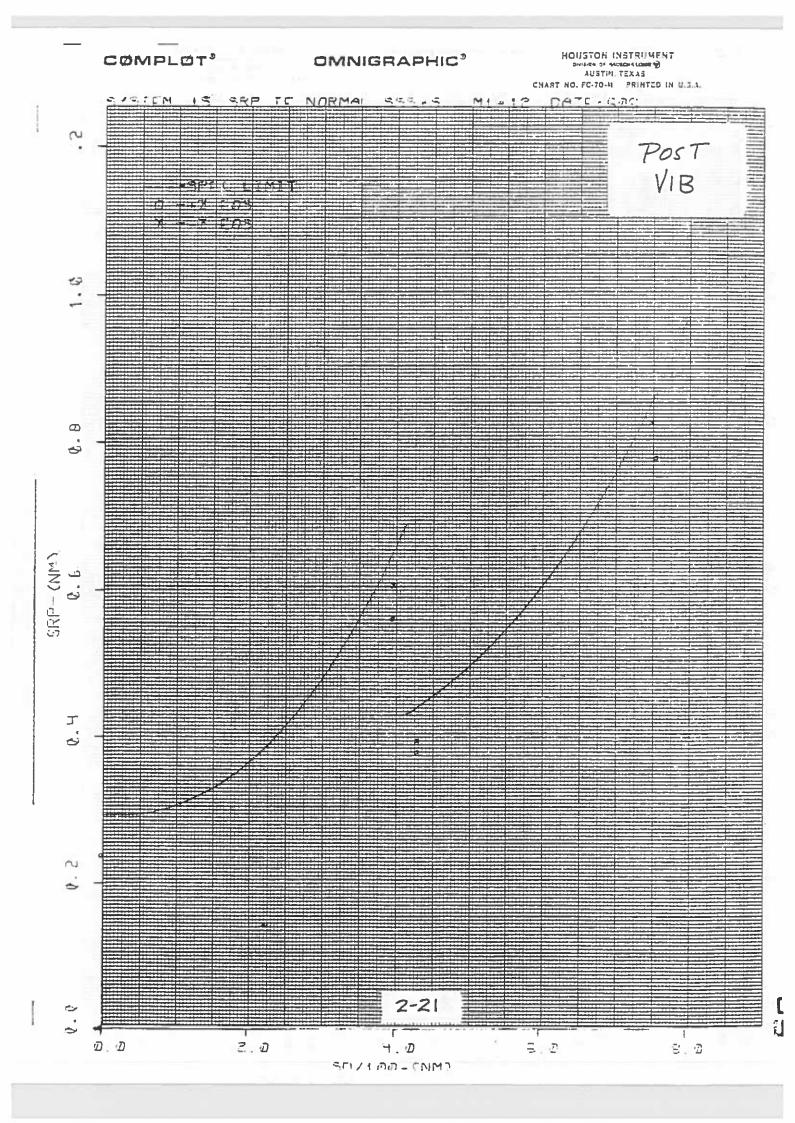
HOUSTON INSTRUMENT DIVISION OF SAMEDIALDERS AUSTIN, TEXAS

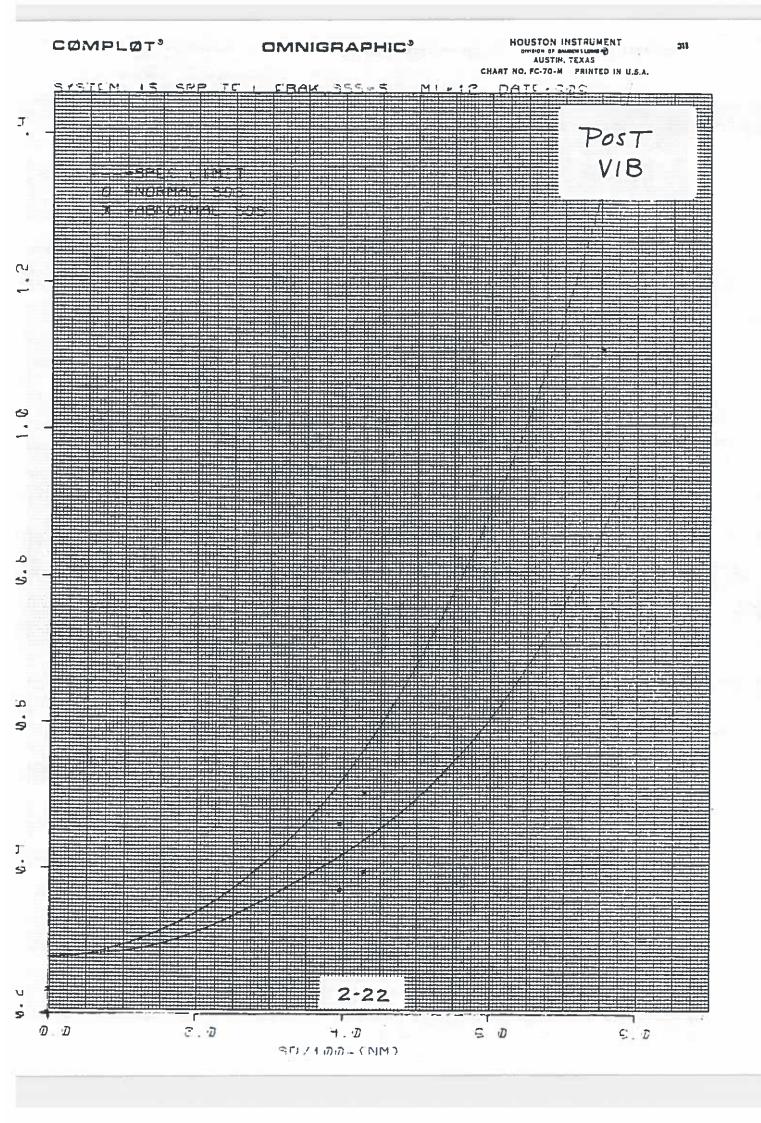
T, COMPLETE, SRP (NM)

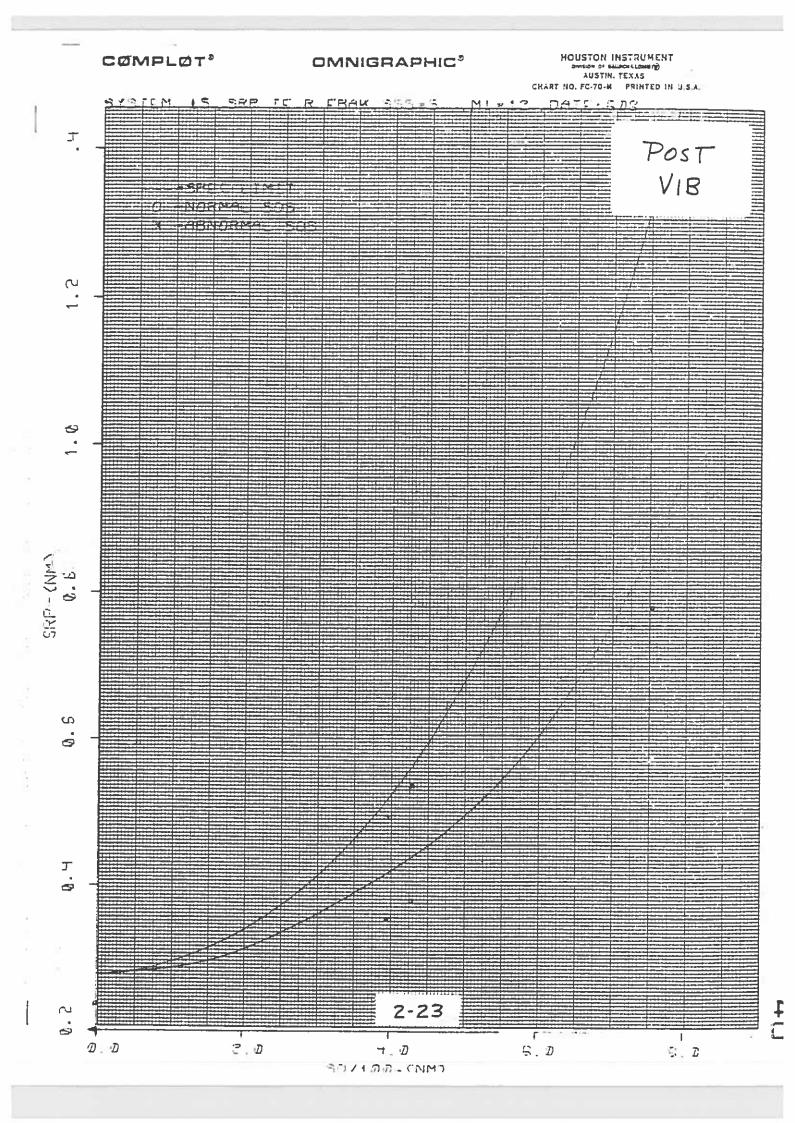
	FLT. NO.	= 15 ENV. =	4 SSS=	5DEGC M1=	12DEGC DATE:	503
SEG	SUR.DIST. (NM)	TFP	TFB	TSP	TSB	
	CINCLE					
LFT	-750.	0.809	0 905	1 751	1 751	
MID	-750. ∸750.	1.292	0.805 0.000	1.751 1.847	1.751	
RGT	-750.	1.115	1.112	1.804	1.845 1.803	
LFT	0.	0.000	0.000	0.000	0.000	
MID	0.	0.000	0.000	0.000	0.000	
RGT	0.	0.000	0.000	0.000	0.000	
LFT	-431.	0.390	0. 386	1.458	1.458	
MID	-431.	0.643	0.000	1. 489	1. 489	
RGT	-431.	0. 529	0. 528	1. 467	1. 467	
LFT	-378.	0.365	0.360	1.401	1.402	
MID	~398.	0. 603	0. 602	1. 425	1. 425	
RGT	-398.	0. 485	0. 484	1.409	1. 410	
LFT	ō.	0.000	0.000	0.000	0.000	
MID	ō.	0.000	0.000	0.000	0.000	
RGT	0.	0.000	0.000	0.000	0.000	
LFT	0.	0. 234	0. 231	0. 960	0.961	
MID	0.	0. 235	0. 232	0. 760	0.961	
RGT	0.	0.236	0. 233	0. 960	0. 960	
LFT	ο.	0.000	0.000	0.000	0.000	
MID	Ο.	0.000	0.000	0.000	0.000	
RGT	0.	0.000	0.000	0.000	0.000	
LFT	398.	0.465	0.463	1.403	1.404	
MID	378.	0. 567	0. 566	1.415	1.415	
RGT	378.	0. 354	0. 349	1.395	1.395	
LFT	431.	0.506	0. 504	1.462	1.463	
MID	431.	0. 605 -	0. 000	1.478	1.478	
RGT	431.	0.378	0.373	1.451	1.452	
LFT	Ο.	0.000	0.000	0.000	0.000	
MID	Ο.	0.000	0. 000	0.000	0.000	
RGT	Ο.	0.000	0. 000	0.000	0.000	
LFT	757.	1.106	1.102	1.799	1.798	
MID	757.	1. 578	0. 000	1.960	1.956	
RGT	757.	0. 782	0.779	1.735	1.735	

1

3


TF, RIGHT, PRIMARY


ŧ


FLT. NO. = 15 EN	IV. = 4 SSS= 5	DEGC M1= 12DEGC	DATE: 503
SUR. DIST. (NM)	SRP ACTUAL (NM)	SRP RATIO	
-750. 0. -431. -398. 0. 0. 0. 398. 431. 0.	1. 115 0. 000 0. 529 0. 485 0. 000 0. 236 0. 000 0. 354 0. 378 0. 000	0.844 0.000 0.931 0.929 0.000 0.858 0.000 0.845 0.856 0.000	
757.	0.782	0. 897	

TF RIGHT, BACKUP

FLT. NO. = 15	ENV. =	4 SSS=	5DEGC M1= 12DEGC	DATE:	503
SUR. DIST. (NM)	SRP	ACTUAL (NM	> SRP RATIO		
-750. 0.		1.112 0.000	0. 842 0. 000		~
-431. -398. 0.		0.528	0.929 0.926		
0. 0. 0.		0.000 0.233 0.000	0.000 0.847 0.000		
398. 431.		0. 349 0. 373	0.833 0.845		
0. 757.		0. 000 0. 779	0.000 0.874		

T. COMPLETE, SRP (NM)

	FLT. NO. =	15 ENV. =	4 SSS=	5DEGC MI= 1	LEDEGC DATE:	608
323	SUR.DIST. (NM)	TFP	TFB	TSP	793	
LFT	-750.	0.827	0.827	1.751	1.755	
MID	-750.	1. 292	0,000		1.846	
RGT	-750.	1,129	1.127		1.810	
LFT	0.	0.000	0.000		0.000	
MID	Ο.	0.000	0.000	0.000		
RGT	0.	0.000	0.000	0.000	0.000	
LET	-431.	0. 394	0. 389	1.451	1.455	
MID	-431.	0.645	0.000		1.499	
RGT	-431.	0. 536	0. 535	1.466	1,470	
LET	-398.	0.370	0.365		1.399	
MID	-398.	0.606	0.608	1.420	1.424	
RGT	-398.	0. 493	0.491	1.407	1.410	
LET	0.	0.000	0.000	0.000	0.000	
MID	Ο.	0.000	0.000	0.000	0.000	
RGT	о	0.000	0.000	0.000	0.000	
LFT	0.	0. 232	0. 230	0. 958	0,951	
MID	Ο.	0.236	0.234	0. 952	0.951	
RGT	0.	0.236	0.234	0. 959	0.962	4
LFT	0.	0.000	0.000	0.000	0.000	
MID	Ο.	0.000	0.000	0.000	0.000	
RGT	Ο.	0.000	0.000	0.000	0.000	
LFT	378.	0.461	0.457	1.399	1.403	
MID	378.	0.560	0.562	1.411	1.414	
RGT	398.	0.354	0.350		1.372	
LFT	431.	0. 501	0.499	1.456	1,460	
MID	431.	0. 591	0.000		1,475	
RGT	431.	0.379	0.374		1.450	
LFT	О.	0.000	0.000	0.000	0.000	
MID	0.	0.000	0.000		0.000	
RGT	О.	0.000	0.000		0.000	
LFT	757	1.108	1.106		1.798	
MID	757.	1. 567	0.000	1.948	1.95-5	
RGT	757.	0. 779	0, 782	1.728	: 763	

11.4.8.

Kenney Land

1

the second

240.0

2-24

a service a

T COMPLETE, SRP RATIO

a.

to the second second

SEG	SUR: DIST: (NM)	TFP	TFB	T.⊒h	T20
LFTD RGTTD RGTD RGTD RGTD RGTD RGT RGT RGT	-750. -750. -750. 0. 0. -431. -431. -431. -431. -398. -398. -398. -398. 0. 0. 0.	$\begin{array}{c} 0.\ 943\\ 0.\ 000\\ 0.\ 855\\ 0.\ 000\\ 0.\ 000\\ 0.\ 000\\ 0.\ 893\\ 0.\ 000\\ 0.\ 943\\ 0.\ 881\\ 0.\ 922\\ 0.\ 943\\ 0.\ 000\\ 0.\ 000\\ 0.\ 000\\ 0.\ 000\\ 0.\ 000\\ 0.\ 000\\ \end{array}$	0.965 0.000 0.853 0.000 0.000 0.980 0.980 0.980 0.942 0.870 0.926 0.937 0.000 0.900 0.000 0.000	0, 779 0, 216 0, 203 0, 003 0, 000 0, 906 0, 928 0, 916 0, 928 0, 916 0, 926 0, 917 0, 000 0, 000 0, 000	0.781 0.821 0.601 0.000 0.700 0.700 0.720 0.725 0.725 0.725 0.725 0.725 0.725 0.725 0.725 0.725 0.725 0.000 0.000
LFIDT RGFIDT RGFIDT RGFIDT RGFIDT RGFIDT RGFIDT RGFIDT	0. 0. 0. 0. 0. 378. 378. 378. 378. 378. 378. 431. 431. 431. 431. 0. 0. 0. 757. 757. 757.	0.845 0.817 0.858 0.000 0.000 0.000 0.881 0.853 0.843 0.882 0.000 0.857 0.000 0.857 0.000 0.857 0.000 0.857 0.000 0.825 0.000 0.825 0.000	0.838 0.809 0.850 0.000 0.000 0.874 0.854 0.835 0.877 0.000 0.847 0.000 0.847 0.000 0.847 0.000 0.823 0.000 0.823 0.000 0.823	0.913 0.913 0.914 0.000 0.000 0.000 0.913 0.920 0.905 0.909 0.919 0.919 0.909 0.919 0.919 0.909 0.919 0.909 0.919 0.900 0.000 0.000 0.000 0.000 0.000 0.793 0.862 0.765	0.915 0.915 0.916 0.000 0.000 0.915 0.922 0.922 0.922 0.922 0.922 0.922 0.922 0.925 0.925 0.925 0.925 0.926 0.000 0.000 0.000 0.000 0.000 0.000

TF, LEFT, PRIMARY

ŧ

FLT. NO. = 15	ENV. = 4 SSS=	5DEGC M1= 12DEGC	DATE:	505
SUR. DIST. (NM)	SRP ACTUAL (N	M) SRP RATIO		
-750. 0. -431. -398. 0. 0. 0. 398. 431. 0.	0. 827 0. 000 0. 394 0. 370 0. 000 0. 232 0. 000 0. 461 0. 501 0. 000	0.943 0.000 0.893 0.881 0.000 0.845 0.000 0.881 0.882 0.000		
757.	1. 108	0.825		

TF, LEFT, BACKUP

FLT. NO. = 15	ENV. =	4 SSS= 5	5DEGC M1= 12DEGC	DATE:	608
SUR. DIST. (NM)	SRP	ACTUAL (NM)	SRP RATIO		
-750. 0. -431. -398. 0. 0. 0. 398. 431. 0. 757.		0.829 0.000 0.389 0.365 0.000 0.230 0.000 0.457 0.499 0.000 1.106	0.946 0.000 0.830 0.870 0.000 0.838 0.000 0.874 0.877 0.000 0.823		

TF, RIGHT, PRIMARY

ι.

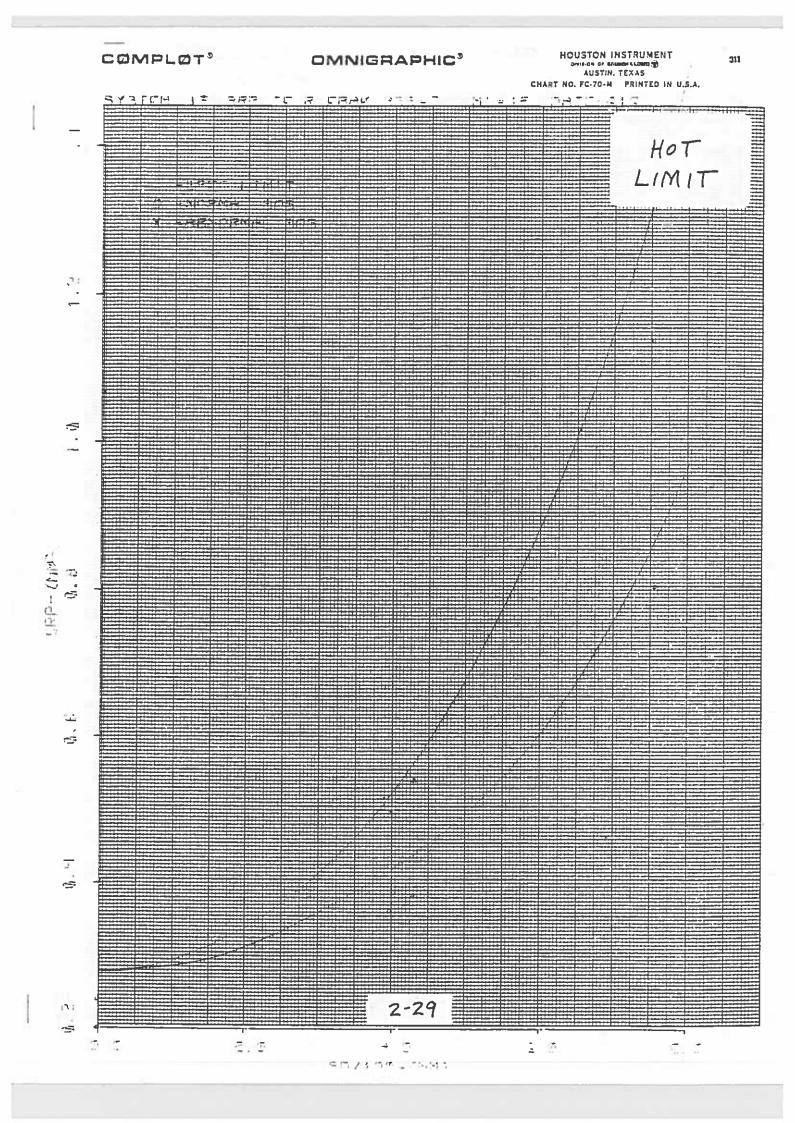
FLT. NO. = 15 ENV. =	4 SSS= 5DEGC	M1= l2DEGC	DATE: 608
SUR.DIST. (NM)	ACTUAL (NM) = S	RP RATIO	
-750. 0. -431. -398. 0. 0. 0. 398. 431. 0. 757.	1.129 0.000 0.536 0.493 0.000 0.236 0.000 0.354 0.379 0.000 0.779	0.855 0.000 0.743 0.943 0.000 0.858 0.000 0.843 0.857 0.000 0.853	

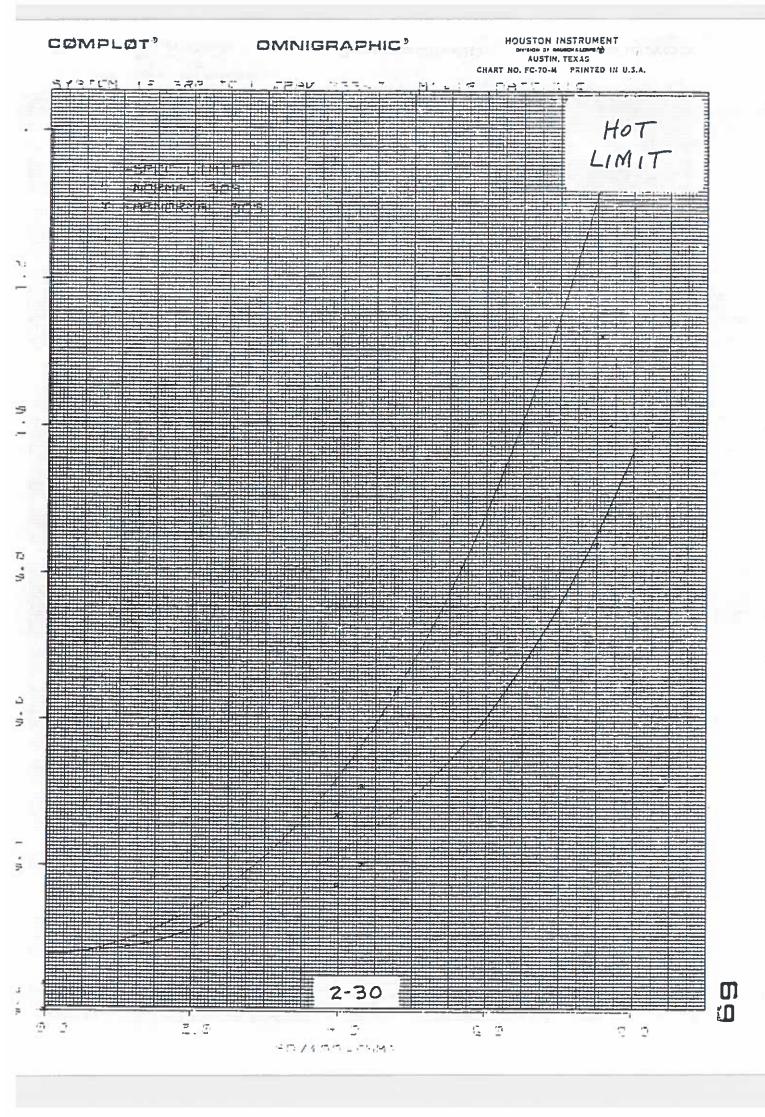
TF RIGHT, BACKUP

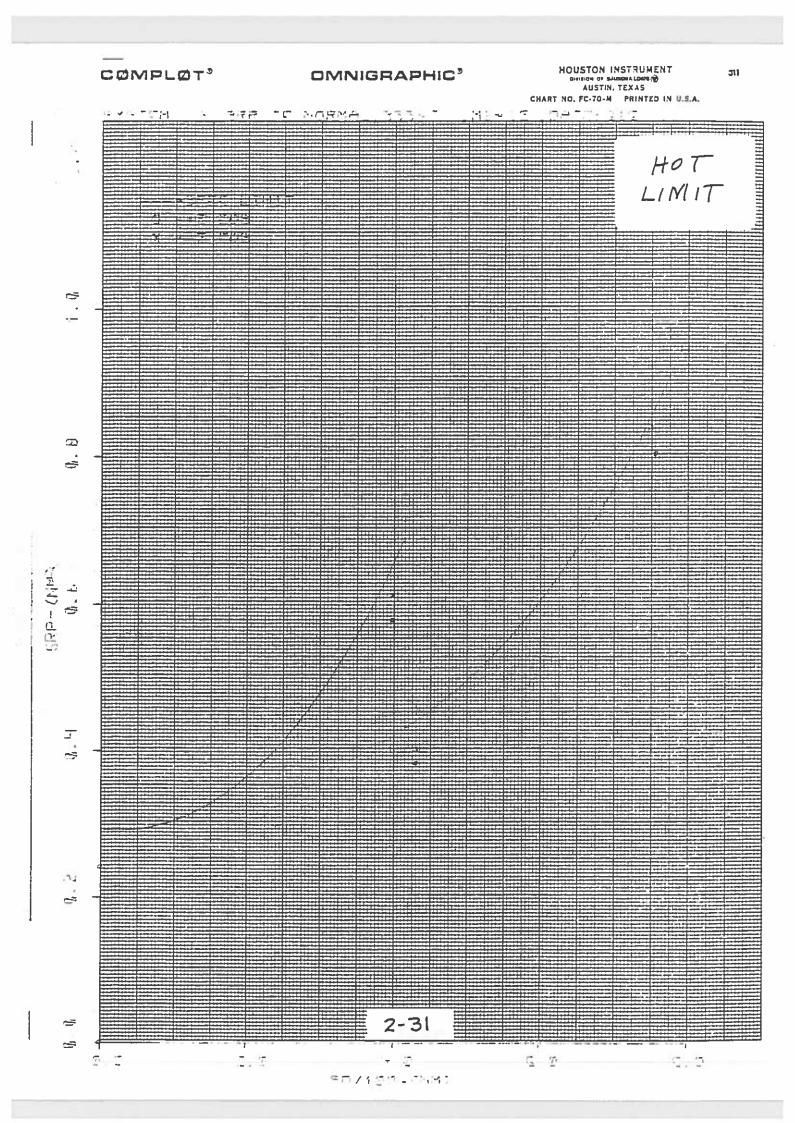
FLT. NO. = 15	ENV. =	4 SSS=	5DEGC M1= ² 12DEGC	DATE: 508
SUR. DIST. (NM)	SRP	ACTUAL (N	M) SRP RATIO	
750. 0. 431. 378. 0. 0. 0. 378. 431. 0. 757.		1.127 0.000 0.535 0.491 0.000 0.234 0.000 0.350 0.374 0.000 0.782	0.853 0.000 0.942 0.939 0.000 0.850 0.000 0.835 0.847 0.000 0.897	

2.2 <u>Geometric Resolution (Cont'd)</u>

2.2.1 Fine Geometric Resolution, Infrared (Cont'd) (3.2.1.1.2.1)


2.2.1.3 Acceptance - Thermal Vacuum


The attached TF SRP curves and tables demonstrate in-spec performance at the thermal vacuum test limits. The Orbit Nominal SRP curves are contained in paragraph 2.2.1.1 and are not included here.


ATTACHMENTS:	TF SRP	Curves Hot Limits	6-18-88
	TF SRP	Tables Hot Limits	6-18-88
	TF SRP	Curves Cold Limits	6-24-88
	TF SRP	Tables Cold Limits	6-24-88

d/0782B

BVS 2414 REV -

T, COMPLETE, SRP (NM)

	FLT. NO. =	15 ENV. =	4 SSS=	7DEGC M1=	12DEGC DATE:	816
SEG	SUR. DIST. (NM)	TFP	TFB	TSP	TSB	
LFT	-750.	0.839	0.832	1.754	1.766	
MID	-750.	1.330	0.000	1.858	1.872	
RGT	-750.	1.137	1.127	1.805	1.818	
LFT	0.	0.000	0.000	0.000	0.000	
MID	0.	0.000	0.000	0.000	0.000	
RGT	Ο.	0.000	0.000	0.000	0.000	
LFT	-431.	0.401	0. 396	1.456	1.465	
MID	-431.	0.645	0.000	1.487	1. 496	
RGT	-431.	0. 539	0. 532	1.470	1. 479	
LFT	-398.	0.374	0.369	1.398	1.407	
MID	-398.	0.611	0.606	1.423	1, 432	
RGT	-378.	0.496	0. 489	1.410	1.418	
LFT	Ο.	0.000	0.000	0.000	0.000	
MID	0.	0.000	0.000	0.000	0.000	
RGT	0.	0.000	0.000	0.000	0.000	
LFT	0.	0. 237	0. 234	0. 961	0. 967	
MID	0.	0.241	0. 238	0. 961	0. 967	
RGT	0.	0. 240	0. 237	0.962	0. 768	
LFT	Q.	0.000	0.000	0.000	0.000	
MID	Ο.	0.000	0.000	0.000	0.000	
RGT	Ο.	0.000	0.000	0.000	0.000	
LFT	398.	0.469	0.462	1.403	1. 412	
MID	378.	0. 577	0. 572	1.415	1. 424	
RGT	378.	0.361	0.357	1.393	1.402	
LFT	431.	0. 509	0. 501	1.458	1.468	
MID	431.	0. 608	0.000	1.476	1.485	
RGT	431.	0.382	0. 378	1.450	1.460	
LFT	0.	0.000	0.000	0.000	0.000	
MID	0.	0.000	0.000	0.000	0.000	
RGT	0.	0.000	0.000	0.000	0.000	
LFT	757.	1.122	1.112	1.798	1.811	
MID	757.	1.593	0.000	1.962	1.978	
RGT	757.	0.803	0.796	1.733	1.744	

Fire ...

Ŧ

-

-

Sec. and the

ţ

T, COMPLETE, SRP RATIO

A second second second second second

.

SEG	SUR DIST. (NM)	TFP	TFB	TSP	TSB
LFT MID RGT LFT MID RGT LFT MID RGT RGT	-750. -750. -750. 0. 0. -431. -431. -431. -398. -398. -398. 0. 0. 0.	0. 977 0. 000 0. 861 0. 000 0. 000 0. 000 0. 908 0. 000 0. 949 0. 891 0. 929 0. 948 0. 000 0. 000 0. 000 0. 000	0.969 0.000 0.853 0.000 0.000 0.000 0.897 0.000 0.937 0.880 0.922 0.935 0.000 0.000 0.000	0.780 0.824 0.803 0.000 0.000 0.907 0.927 0.929 0.918 0.911 0.928 0.919 0.919 0.000 0.000 0.000	0.785 0.833 0.806 0.000 0.000 0.915 0.924 0.924 0.917 0.934 0.925 0.000 0.000 0.000
LFT MIGT RGFTD RGFTD RGFTD RGFTD RGFTD RGFTD RGT RGT	0. 0. 0. 0. 0. 398. 398. 398. 398. 431. 431. 431. 431. 0. 0. 0. 757. 757. 757.	0.861 0.833 0.871 0.000 0.000 0.877 0.877 0.860 0.875 0.860 0.875 0.000 0.845 0.000 0.865 0.000 0.835 0.000 0.835 0.000 0.835 0.000 0.835	0.852 0.823 0.862 0.000 0.000 0.000 0.883 0.871 0.850 0.882 0.000 0.855 0.000 0.855 0.000 0.000 0.000 0.827 0.000 0.913	0. 916 0. 915 0. 916 0. 000 0. 000 0. 000 0. 915 0. 923 0. 908 0. 911 0. 922 0. 908 0. 911 0. 922 0. 906 0. 000 0. 000 0. 000 0. 000 0. 000 0. 795 0. 868 0. 767	0.921 0.922 0.000 0.000 0.000 0.921 0.928 0.914 0.916 0.927 0.911 0.000 0.000 0.000 0.000 0.801 0.875 0.772

the second s

TF, LEFT, PRIMARY

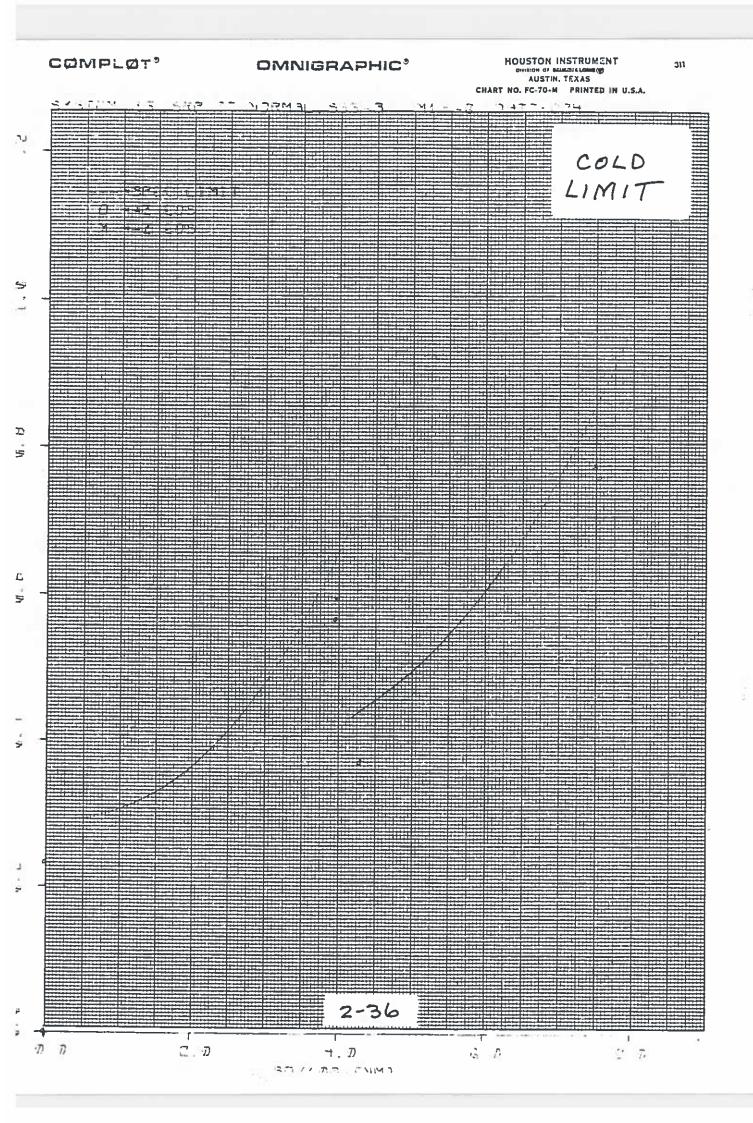
ı.

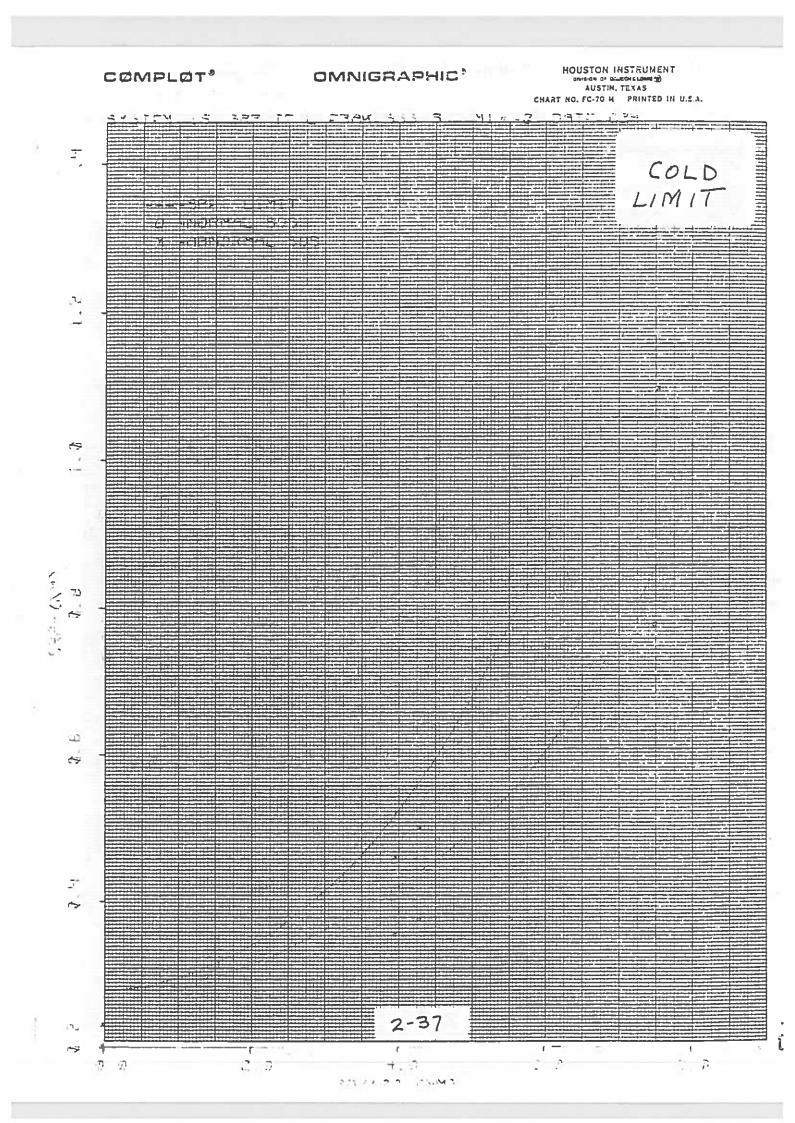
FLT. NO. = 15 ENV. =	4 SSS= 7DEGC	M1= 12DEGC	DATE: 618
SUR. DIST. (NM) SRP	ACTUAL (NM) S	RP RATIO	
-750.	0.839	0.977	
0.	0.000	0.000	
-431.	0.401	0.908	
-398.	0.374	0.891	
0.	0.000	0.000	
0.	0.237	0.861	
0.	0.000	0.000	
398.	0.469	0.897	
431.	0. 507	0.875	
0.	0. 000	0.000	
757.	1. 122	0.835	

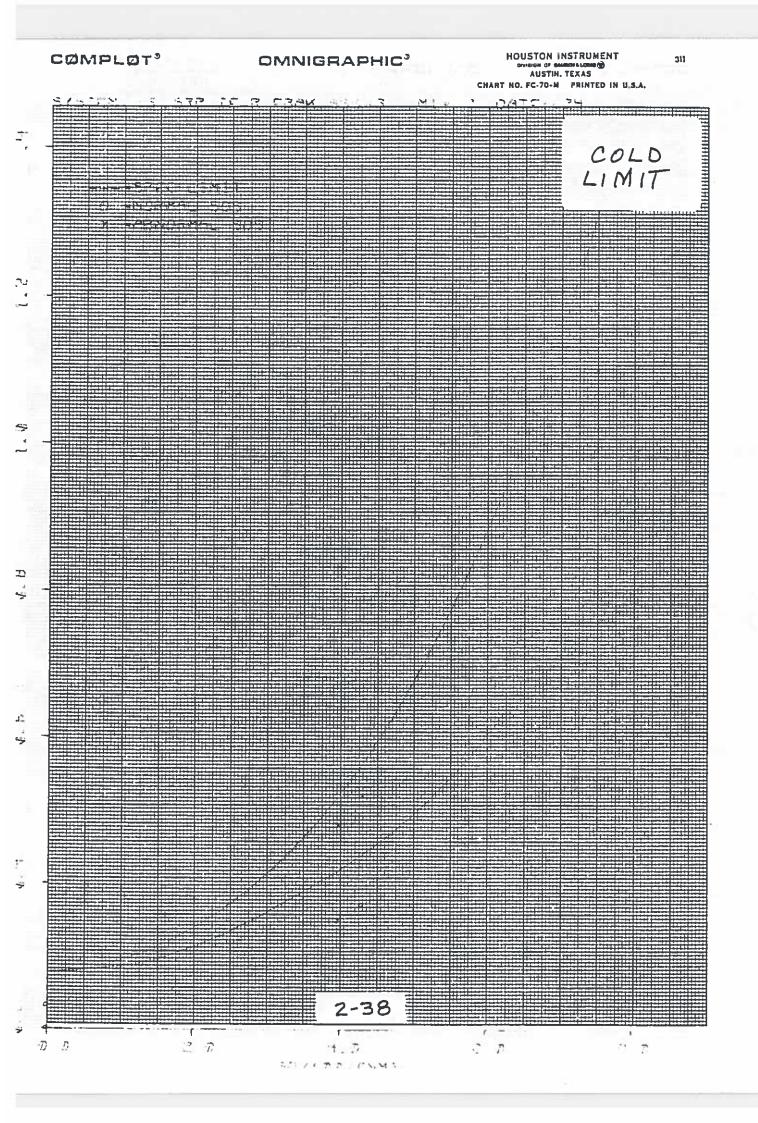
TF, LEFT, BACKUP

FLT. NO. = 15 ENV	= 4 SSS= 7DE	EGC M1= 12DEGC	DATE:	618
SUR. DIST. (NM)	SRP ACTUAL (NM)	SRP RATIO		
-750. 0. -431. -398. 0. 0. 0. 398. 431. 0. 757.	0.832 0.000 0.396 0.369 0.000 0.234 0.000 0.462 0.501 0.000 1.112	0.969 0.000 0.897 0.880 0.000 0.852 0.000 0.883 0.882 0.000 0.882 0.000 0.827		

۰.


1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -


TF, RIGHT, PRIMARY


SUR. DIST. (NM) SRP ACTUAL (NM) SRP RATIO -750. 1.137 0.861 0. 0.000 0.000 -431. 0.539 0.949 -398. 0.496 0.900	FLT. NO. = 15	ENV. = 4 S	SS= 7DEGC	M1= 12DEGC	DATE:	619
0. 0.000 0.000 -431. 0.537 0.747 -378. 0.476 0.748	SUR. DIST. (NM)	SRP ACTU	AL (NM) SF	RP RATIO		
0. 0.000 0.000 0. 0.240 0.871 0. 0.000 0.000 378. 0.361 0.860 431. 0.382 0.845 0. 0.000 0.000 757. 0.803 0.721	0. -431. -398. 0. 0. 0. 398. 431.	0.00 0.53 0.49 0.00 0.24 0.00 0.34 0.38	0 99 6 00 00 1 2	0.000 0.949 0.948 0.000 0.871 0.000 0.860 0.865 0.000		

TF RIGHT, BACKUP

FLT. NO. = 15	ENV. = 4 SSS= 7DEGC	M1= 12DEGC	DATE:	618
SUR. DIST. (NM)	SRP ACTUAL (NM)	SRP RATIO		
750. 0. 431. 398. 0.	1. 127 0. 000 0. 532 0. 489 0. 000	0.853 0.000 0.937 0.935 0.000		
0. 0. 398. 431. 0. 757.	0.237 0.000 0.357 0.378 0.000 0.796	0.862 0.000 0.850 0.855 0.000 0.913		

T, COMPLETE, SRP(NM)

FLT. NO. =	15 ENV. =	4 555=	3DEGC M1= -E	BDEGC DATE:	624
SEG SUR. DIST. (NM)	TFP	TFB	TSP	TSB	
LFT -750.	0. 775	Q. 769	1.736	1.748	
MID -750.	1.341	0. 000	1.852	1.866	
RGT -750.	1.078	1.099	1.790	1.803	
LFT 0.	0.000	0. 000	0.000	0.000	
MID O.	0.000	0. 000	0.000	0.000	
RGT O.	0.000	0.000	0.000	0.000	
LFT -431.	0.374	0. 369	1. 443	1.453	
MID -431.	0. 630	0.000	1.473	1.483	
RGT -431.	0.519	0.518	1.457	1.467	
LFT -398.	0.353	0. 349	1.385	1.374	
MID -378.	0. 593	0. 589	1.412	1.421 1.407	
RGT -398.	0. 479	0.478	1.397	0.000	
LFT 0.	0.000	0.000	0.000	0.000	
MID O.	0.000	0.000	0.000	0.000	
RGT O.	0.000	0.000	0.000 0.951	0.958	
LFT 0.	0. 230	0. 227	0. 951	0. 957	
MID O.	0. 232	0.229	0. 951	0. 758	
RGT CO O.	0. 232	0. 229 0. 000	0. 000	0.000	
LFT Der p 0.	0.000 0.000	0.000	0.000	0.000	
MID O.	0.000	0.000	0.000	0.000	
RGT 0. LFT 398.	0. 460	0. 459	1.393	1.402	
MID 398.	0. 566	0. 562	1.406	1.415	
RGT 378.	0.349	0. 344	1.383	1.393	
LFT 431.	0. 499	0. 498	1.452	1.462	
MID 431.	0. 599	0.000	1.465	1.475	
RGT 431.	0.371	0.366	1.440	1.450	
LFT 0.	0.000	0.000	0.000	0.000	
MID O.	0.000	0. 000	0.000	0.000	
RGT O.	0.000	0. 000	0.000	0.000	
LFT 757.	1.096	1. 097	1.786	1.799	
MID 757.	1. 576	0.000	1. 943	1.962	
RGT 757.	0.759	0. 753	1. 720	1.731	

1

T, COMPLETE, SRP RATIO

4

SEG	SUR. DIST. (NM)	TFP	TFB	TSP	TSB
LFT MID RGT LFT MID RGT LFT MID RGT LFT MID RGT	-750. -750. -750. 0. 0. 0. -431. -431. -431. -398. -398. -398. 0. 0. 0. 0.	0. 703 0. 000 0. 831 0. 000 0. 000 0. 000 0. 847 0. 000 0. 714 0. 842 0. 702 0. 714 0. 842 0. 702 0. 716 0. 000 0. 000	0.895 0.000 0.832 0.000 0.000 0.000 0.837 0.000 0.911 0.831 0.876 0.914 0.914 0.000 0.000 0.000	0.772 0.823 0.796 0.000 0.000 0.901 0.920 0.910 0.920 0.910 0.920 0.911 0.920 0.911 0.000 0.920 0.911	0.777 0.830 0.802 0.000 0.000 0.907 0.926 0.916 0.926 0.917 0.926 0.917 0.000 0.000 0.000
LFT MID RGT LFT MID RGT LFT MID RGT LFT MID RGT	0. 0. 0. 0. 0. 398. 398. 398. 398. 431. 431. 431. 431. 0. 0. 0. 757. 757. 757.	0.837 0.802 0.843 0.000 0.000 0.000 0.880 0.861 0.832 0.878 0.000 0.837 0.000 0.837 0.000 0.837 0.000 0.837 0.000 0.816 0.000 0.816 0.000 0.871	0. 826 0. 791 0. 832 0. 000 0. 000 0. 000 0. 878 0. 856 0. 820 0. 876 0. 820 0. 876 0. 000 0. 828 0. 000 0. 828 0. 000 0. 816 0. 000 0. 863	0. 906 0. 905 0. 906 0. 000 0. 000 0. 000 0. 908 0. 917 0. 902 0. 906 0. 915 0. 975 0. 899 0. 000 0. 000 0. 000 0. 790 0. 860 0. 761	0. 912 0. 912 0. 912 0. 000 0. 000 0. 000 0. 915 0. 923 0. 924 0. 923 0. 923 0. 925 0. 923 0. 924 0. 925 0. 926 0. 925 0. 926 0. 925 0. 926 0. 926 0. 925 0. 926 0.

Property and

F.

Section and

Second a

ŝ

ite

ŝ

and the second s

ş

ž

TF, LEFT, PRIMARY

1

1.04

FLT. NO. = 15 ENV. =	4 SSS= 3DEGC	M1= -8DEGC DATE: 624
SUR. DIST. (NM) SRP	ACTUAL (NM) S	RP RATIO
750. 0. 431. 398. 0. 0. 0. 398. 431. 0. 757.	0.775 0.000 0.374 0.353 0.000 0.230 0.000 0.460 0.499 0.000 1.096	0. 903 0. 000 0. 847 0. 842 0. 000 0. 837 0. 000 0. 880 0. 878 0. 000 0. 816

.

TF, LEFT, BACKUP

	BDEGC DATE: 624	
SUR. DIST. (NM) SRP ACTUAL (NM) SRP RAT	.10	
-750. 0.769 0.875 0. 0.000 0.000 -431. 0.369 0.837 -398. 0.349 0.831 0. 0.000 0.000 0. 0.000 0.000 0. 0.227 0.826 0. 0.000 0.000 378. 0.459 0.878 431. 0.498 0.876 0. 0.000 0.000		

TF, RIGHT, PRIMARY

1

FLT. NO. = 15	ENV. =	4 555=	3DEGC M	11= -8DEGC	DATE:	624
SUR. DIST. (NM)	SRP	ACTUAL (N	M) SRP	RATIO		
-750.		1.098	0	. 831		
Q .		0.000	0	. 000		
-431.		0. 519	0	. 914		
-378.		0. 479	0	. 916		
Q.		0. 000	0	. 000		
0.		0. 232	0	. 843		
0.		0. 000	0	. 000		
378.		0. 349	0	. 832		
431.		0. 371	0	. 839		
0.		0. 000	0	. 000		
757.	00.1	0. 759	0	. 871		

TF RIGHT, BACKUP

N. Ach

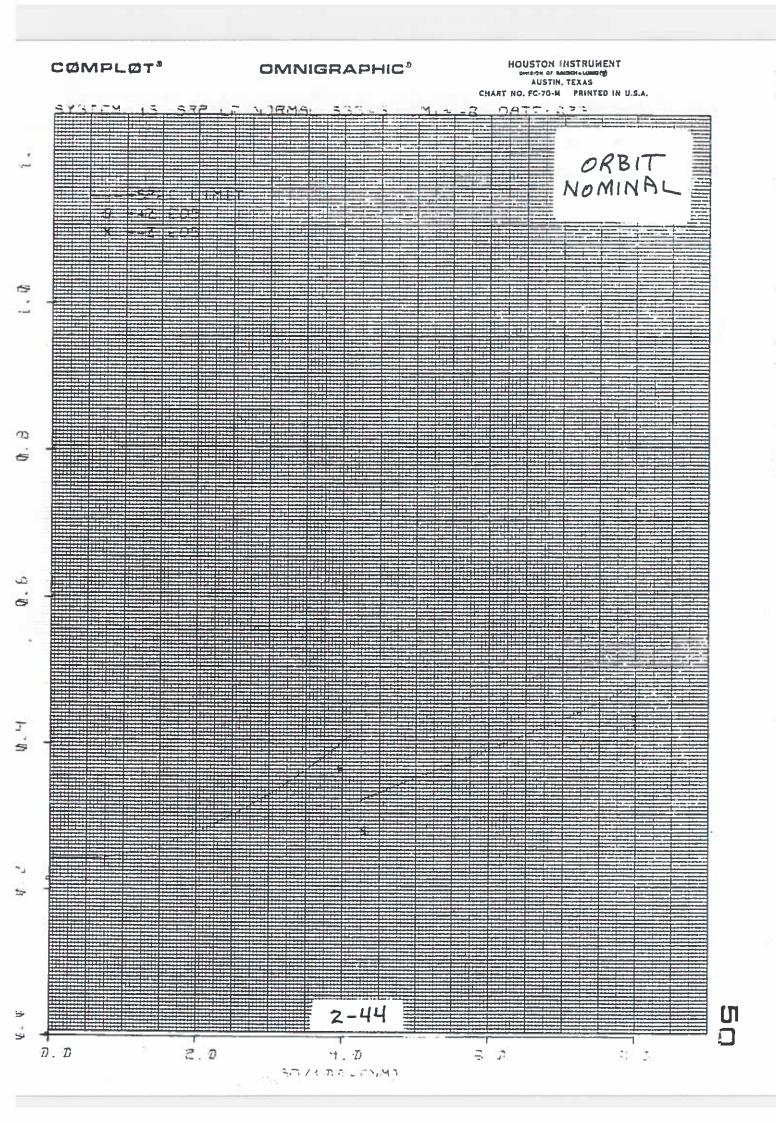
FLT. NO. = 15	ENV. =	4 SSS=	3DEGC	M1= -8DEG	C DATE:	624
SUR. DIST. (NM)	SRP	ACTUAL (N	M) SI	RP RATIO		
-750. 0. -431. -398. 0. 0. 0. 398. 431. 0.		1.077 0.000 0.518 0.478 0.000 0.227 0.000 0.344 0.366 0.000		0.832 0.000 0.911 0.914 0.000 0.832 0.000 0.820 0.828		
757.	~	0. 753		0.000 0.863		

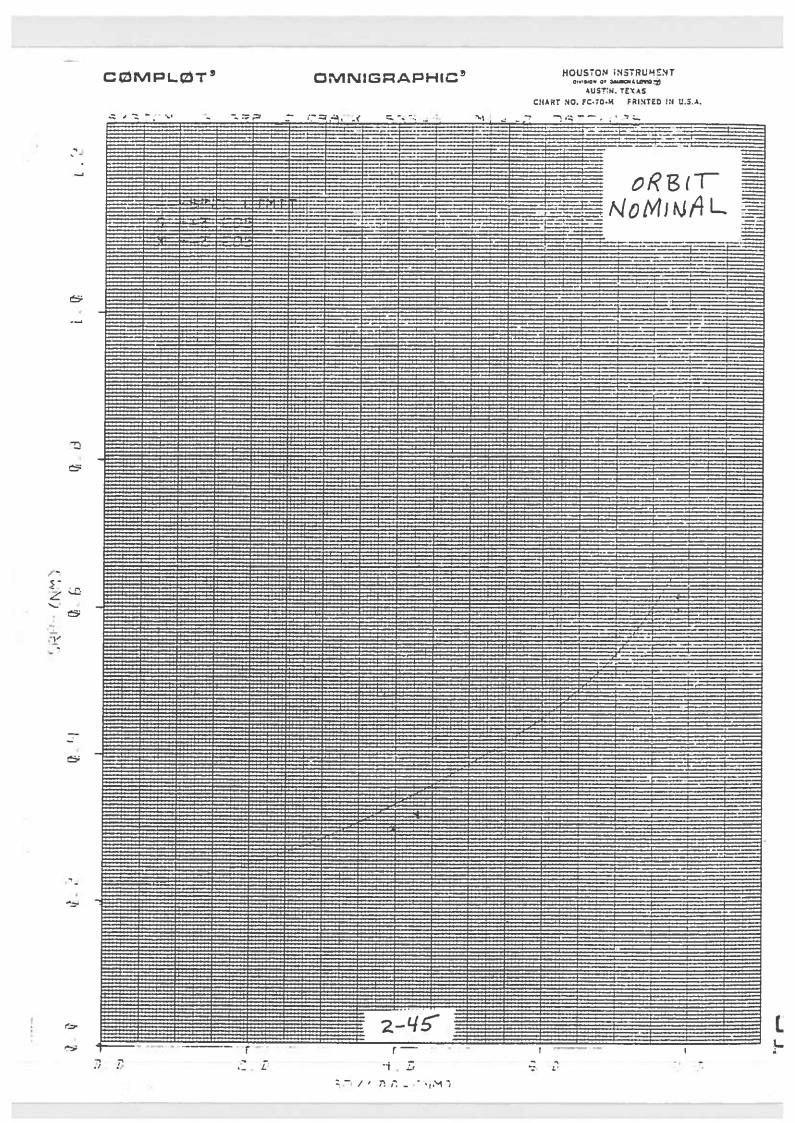
2.2 <u>Geometric Resolution</u> (Cont'd)

2.2.2 Fine Geometric Resolution - Daytime Visual (3.2.1.1.2.1)

2-43

5 1 28


2.2.2.1 Baseline (Orbit Nominal)


The LF SRP is within the development specification limits in both Primary and Redundant configurations.

ATTACHMENTS: LF SRP Curves Orbit Nominal 6-29-88 LF SRP Tables Orbit Nominal 6-29-88

d/07828

BVS 2414 REV -

LF, DAY, NORMAL, PRIMARY

FLT. NO. = 15	ENV. = 4 SSS=	5DEGC M1= -8DEGC	DATE:	629
SUR. DIST. (NM)	SRP ACTUAL (N	M) SRP RATIO		
-800.	0. 425	0. 881		
0.	0. 000	0.000		
-431.	0. 279	0.856		
-398.	0. 365	0. 904		
0.	0.000	0.000		
Ο.	0. 214	0. 892		
0.	0.000	0.000		
398.	0.367	0. 911		
431.	0. 284	0. 871		
0.	0.000	0.000		
800.	0. 436	0. 904		

LF, DAY, NORMAL, BACKUP

FLT. NO. = 15	ENV. =	4 SSS=	5DEGC	M1= -8DEGC	DATE:	629
SUR. DIST. (NM)	SRP	ACTUAL (N	M) SF	RP RATIO		
-800.		0. 429		0. 888		
0.		0.000		0.000		
-431.		0. 281		0. 860		
-378.		0. 368		0.911		
0.		0.000		0.000		
0.		0. 215		0. 878		
0.		0.000		0.000		
378.		0. 370		0.917		
431.		0. 286		0.876		
0.		0.000		0.000		
800.		0. 440		0. 911		

LF, DAY, FALLBACK, PRIMARY

.

1.0 1500 - 0.4

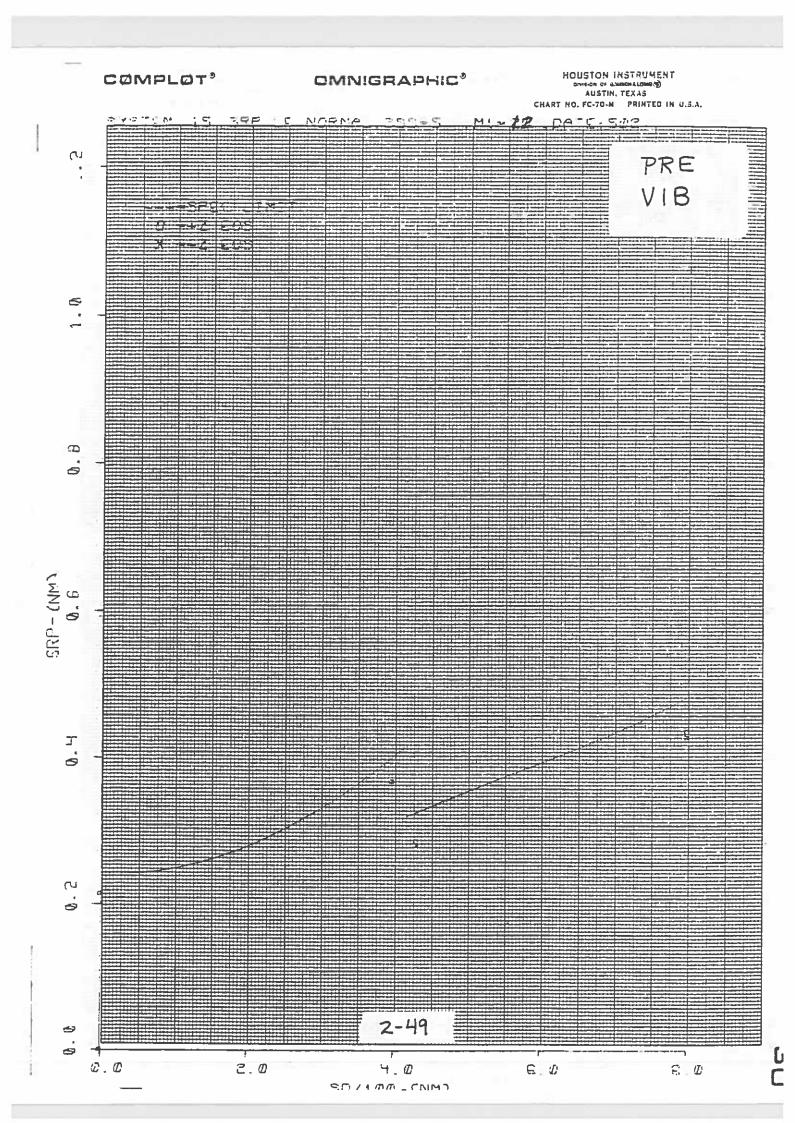
FLT. NO. = 15	ENV. =	4 SSS= 5DEGC	M1= -BDEGC DATE:	629
SUR. DIST. (NM)	SRP	ACTUAL (NM) S	RP RATIO	
-787. 0.		0. 597 0. 000	0.899 ^{ii e} ndi 0.000	
-431.		0.315	0. 900	
-378. 0.		0. 298 0. 000	0.877 0.000	
0. 0.		0. 195 0. 000	0. 871 0. 000	
378. 431.		0.303	0.911 0.915	
0.		0.000	0. 000	
431.		0. 320	0. 915	

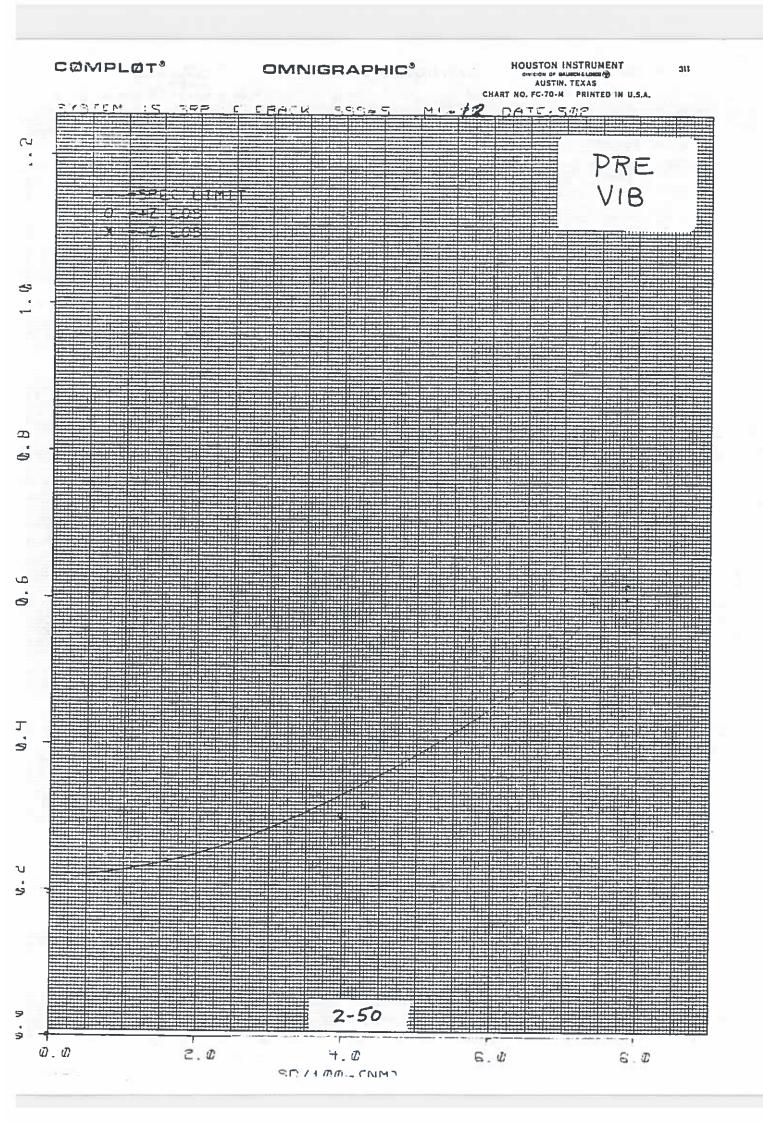
LF, DAY, FALLBACK, BACKUP

FLT. NO. = 15	ENV. =	4 SSS=	5DEGC M1=	-8DEGC DATE:	629
SUR. DIST. (NM)	SRP	ACTUAL (N	M) SRP RA	T10	
-787. 0. -431. -398. 0. 0. 0. 398. 431.		0. 600 0. 000 0. 317 0. 301 0. 000 0. 196 0. 000 0. 305 0. 322	0. 90 0. 00 0. 90 0. 90 0. 90 0. 00 0. 89 0. 00 0. 91 0. 92	2 7 4 2 7 2 7	
0. 788.		0.000 0.618	0.000 0.929		

2.2 <u>Geometric Resolution</u> (Cont'd)

1 30 BL


2.2.2 <u>Fine Geometric Resolution - Daytime Visual</u> (Cont'd) (3.2.1.1.2.1)
2.2.2.2 <u>Acceptance - Vibration</u>


OLS #15 underwent Acceptance-level SSS vibration on May 12, 1988. The Pre-to-Post Vibration SRP performance is within Specification requirements and is shown on the attached curves and tables. No changes in SRP performance occurred as a result of vibration.

ATTACHMENTS:	LF SRP	Curves	Pre-Vibration	5-2-88
	LF SRP	Tables	Pre-Vibration	5-2-88
	LF SRP	Curves	Post-Vibration	6-7-88
	LF SRP	Tables	Post-Vibration	6-7-88

d/07828

BVS 2414 REV -

LF, DAY, NORMAL, PRIMARY

4

Adding a special second second state

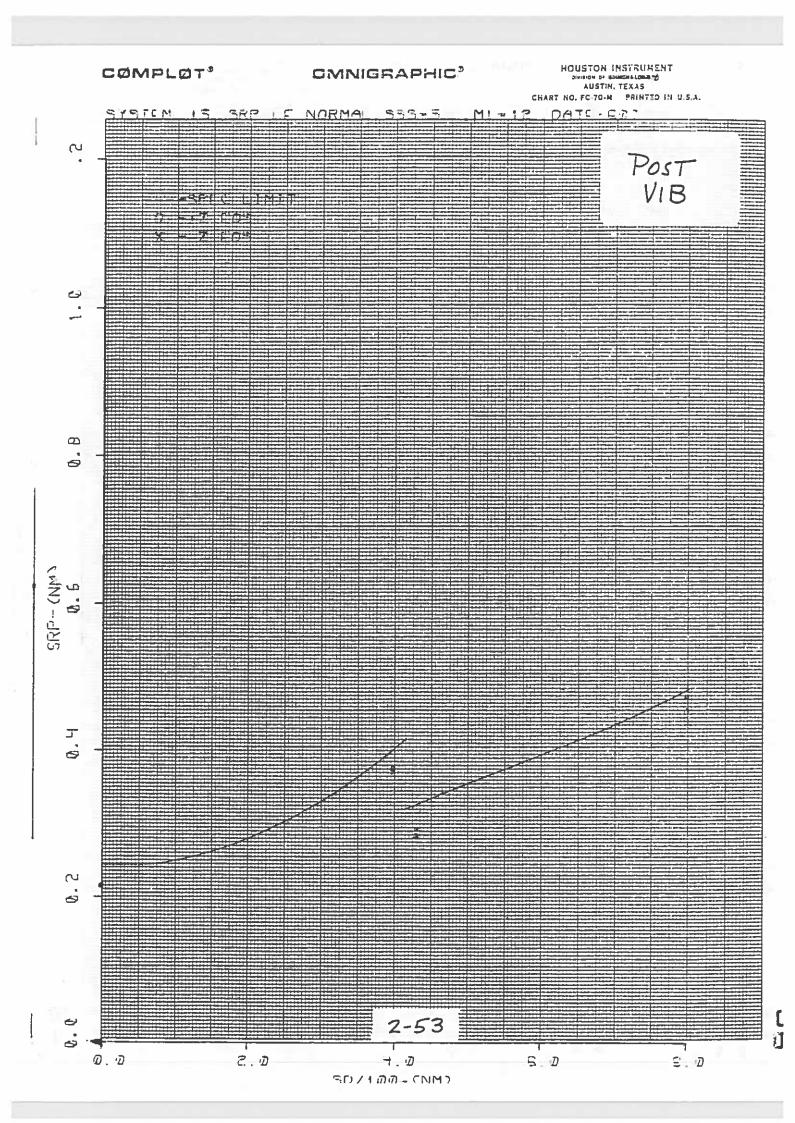
FLT. NO. = 15 ENV. =	4 SSS= 5DEGC	M1= 20DEGC DATE: 502
SUR. DIST. (NM) SRP	ACTUAL (NM) SI	RP RATIO
-431. 398. 0. 0. 0. 398. 431.	0. 427 0. 000 0. 281 0. 368 0. 000 0. 214 0. 000 0. 368 0. 286 0. 000	0.885 0.000 0.861 0.911 0.000 0.870 0.000 0.912 0.875 0.000
800.	0. 435	0. 902

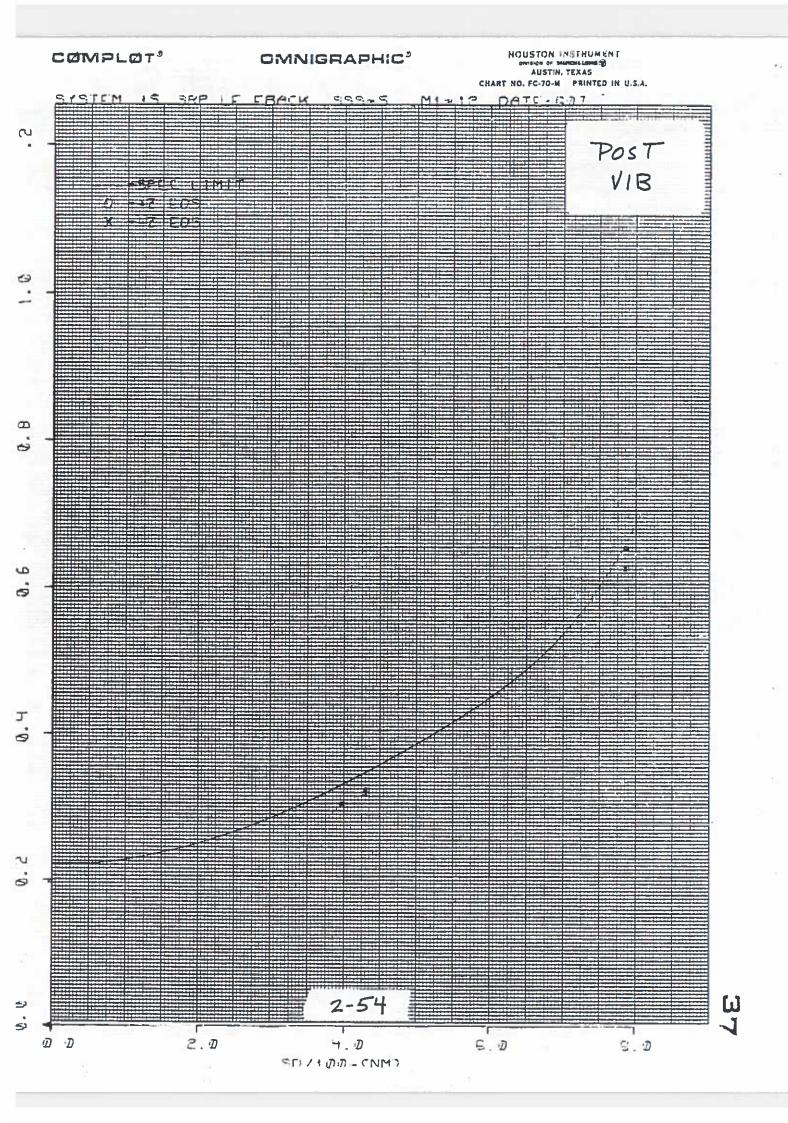
LF, DAY, NORMAL, BACKUP

FLT. NO. = 15 ENV. =	4 SSS= 5DEGC	M1= 20DEGC	DATE: 502
SUR. DIST. (NM) SRP	ACTUAL (NM) SI	RP RATIO	
BOO. 0. 431. 378. 0. 0. 0. 378. 431. 0. 800.	0. 431 0. 000 0. 283 0. 371 0. 000 0. 215 0. 000 0. 371 0. 288 0. 000 0. 440	0.873 0.000 0.867 0.919 0.000 0.877 0.000 0.919 0.882 0.000 0.910	

LF, DAY, FALLBACK, PRIMARY

		12	
FLT. NO. = 15	ENV. = 4 SSS=	5DEGC M1= 20DEGC	DATE: 502
SUR. DIST. (NM)	SRP ACTUAL (N	M) SRP RATIO	
-787.	0. 598	0. 900	
0.	0.000	0.000	
-431.	0. 315	0. 901	
398.	0. 300	0. 902	
0.	0.000	0. 000	
0.	0. 195	0.872	
0.	0.000	0.000	
378.	0. 304	0. 914	
431.	0. 320	0. 714	
0.	0.000	0.000	
788.	Ð. 616	0. 925	


LF, DAY, FALLBACK, BACKUP


SUR. DIST. (NM) SRP ACTUAL (NM) SRP RATIO	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

2-52

Maximum dependence dependence

•

LE, DAY, NORMAL, PRIMARY

8

÷ i-

FLT. NO. = 15	ENV. =	4 SSS=	5DEGC M1= 12DEGC	DATE: 60	07
SUR. DIST. (NM	> SRP		() SRP RATIO		
-800. 0. -431. -398. 0. 0. 0. 378. 431. 0.	8	0.454 0.000 0.282 0.369 0.000 0.215 0.000 0.375 0.291 0.000	0.000 0.894 0.000 0.929 0.893 0.000		
800.		0.472	0.977		

LE, DAY, NORMAL, BACKUP

F	FLT.	NO. =	15	ENV. =	4	SSS≖	5DEGC	: M1	= 120	EGC	DATE:	607
9	SUR. E	DIST.	(NM)	SRP	AC	TUAL (N	M)	SRP	RATIO			
	-4 -3 3	300. 0. 131. 398. 0. 0. 0. 398. 131. 0.			0. 0. 0. 0. 0. 0. 0.	457 000 284 372 000 216 000 377 293 000		0. 0. 0. 0. 0. 0.	947 000 870 922 000 900 900 900 936 898 000			
	8	300.				475			783			

2-55

5

apara re

.

1.1

 $= \left\{ {{\mathbf{y}}_{1}^{{\rm{c}}}} \right\}_{1}^{{\rm{c}}} \left\{ {{\mathbf{y}}_{1}^{{\rm{c}}}} \right\}_{2}^{{\rm{c}}} \left\{ {{\mathbf{y}}_{1}^{{\rm{c}}}} \right\}_{2}^{{\rm{c}}}} \left\{ {{\mathbf{y}}_{1}^{{\rm{c}}}} \right\}_{2}^{{\rm{c}}} \left\{ {{\mathbf{y}}_{1}^{{\rm{c}}}} \right\}_{2}^{{\rm{c}}}} \left\{ {{\mathbf{y}}}$

LF, DAY, FALLBACK, PRIMARY

ŧ

FLT. NO. = 15	ENV. =	4 SSS=	5DEGC MI= 12DEGC	DATE: 607
SUR. DIST. (NM)	SRP	ACTUAL (NM) SRP RATIO	
-787. 0.		0.626 0.000	0.942 0.000	
-431. -398.		0.318 0.304	0.911 0.915	
0. 0, 0.		0.000 0.197	0.000	
378. 431.		0:000 0:304 0:324	0,000 0,916 0,926	
0. 788.		0. 000 0. 653	0.000	

Ę

LF, DAY, FALLBACK, BACKUP

FLT. NO. = 15 ENV. =	4 SSS= 5DEGC M1= 12DEGC	DATE: 607
SUR. DIST. (NM) SRP	ACTUAL(NM) SRP RATIO	
-787. 0. -431. -398. 0. 0. 0. 398.	0. 628 0. 745 0. 000 0. 000 0. 321 0. 717 0. 306 0. 721 0. 000 0. 000 0. 178 0. 705 0. 000 0. 000 0. 307 0. 722	
431. 0. 788.	0.326 0.732 0.000 0.000 0.456 0.785	÷

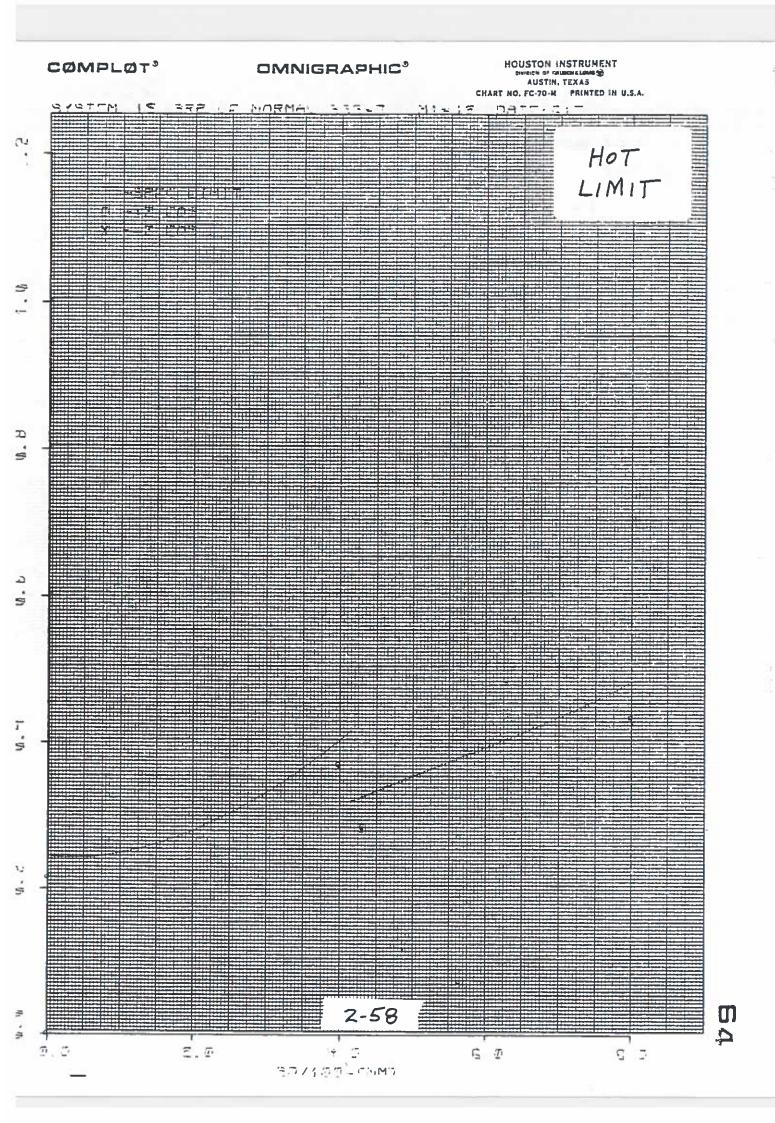
2-56

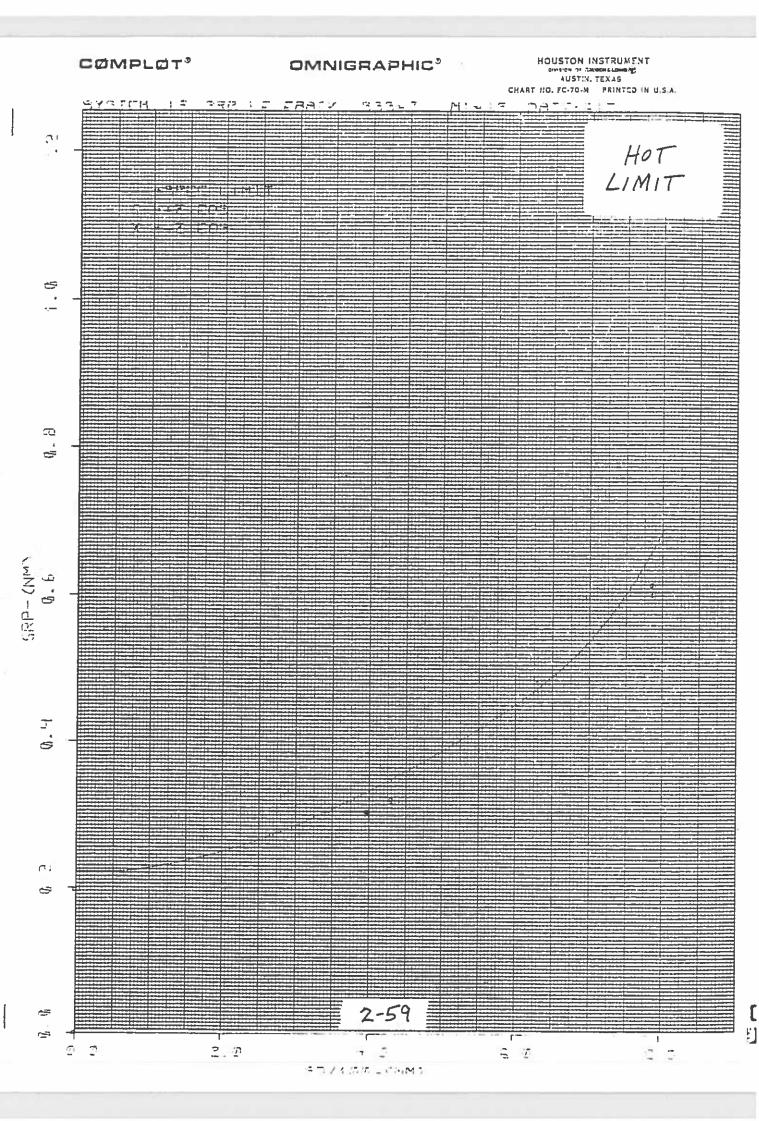
and the second sec

2.2.2 Fine Geometric Resolution - Daytime Visual (Cont'd) (3.2.1.1.2.1)

2.2.2.3 Acceptance - Thermal Vacuum

OLS #15 LF SRP is within the specification limits in both Primary and Redundant configurations. The Orbit Nominal curves are in paragraph 2.2.2.1 and are not included here.


ATTACHEMTS:	LF	SRP	Curve	Hot Limits	6-17-88
	LF	SRP	Tables	Hot Limits	6-17-88
	LF	SRP	Curves	Cold Limits	6-22-88
	LF	SRP	Tables	Cold Limits	6-22-88


d/07828

1.85 1.00.00

2-57

BVS 2414 REV -

STANDAR COLLECTION STATE

LF, DAY, FALLBACK, PRIMARY

FLT. NO. = 15 ENV. =	4 SSS= 7DEGC	M1= 12DEGC DATE: 61	7
SUR. DIST. (NM) SRP	ACTUAL (NM) S	RP RATIO	
-787.	0. 600	0. 904	
0.	0. 000	0. 000	
-431.	0. 317	0. 907	
-378.	0. 301	0. 904	
0.	0. 000	0. 000	
0.	0. 196	0. 897	
0.	0.000	0.000	
398.	0.303	0.912	
431.	0.320	0.916	
0.	0.000	0.000	
788.	0.614	0.922	

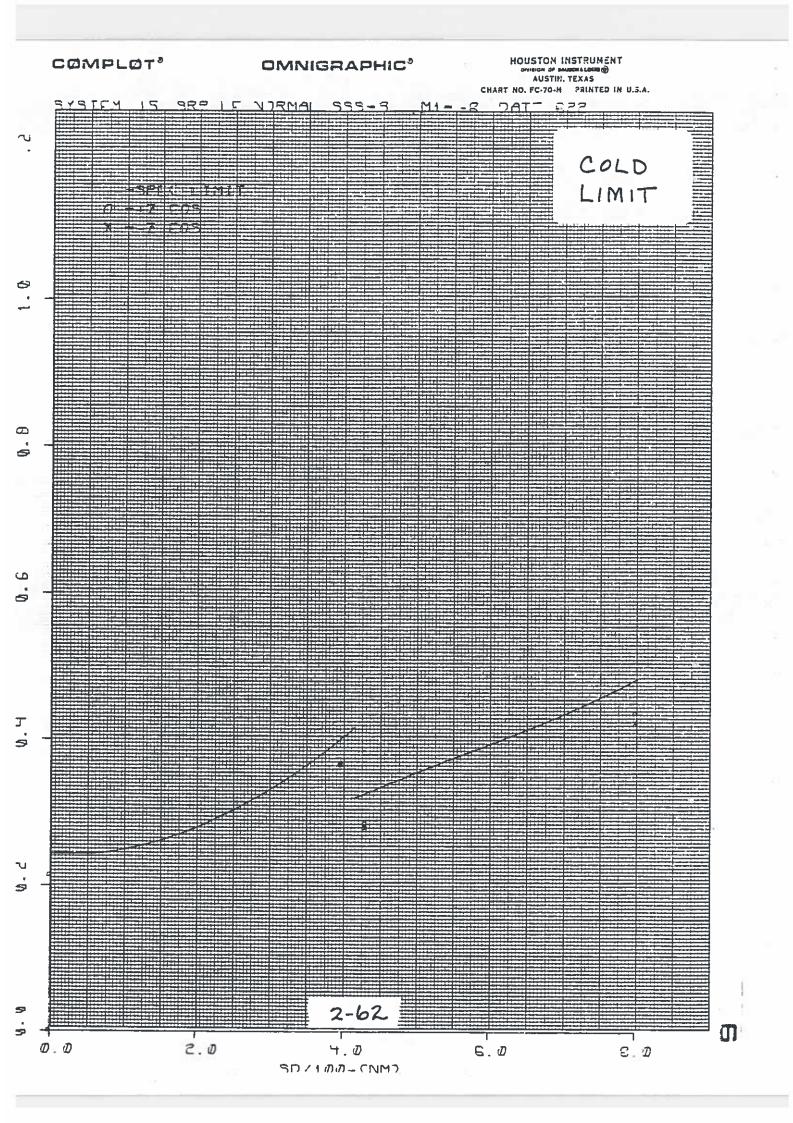
ALC: 10.04

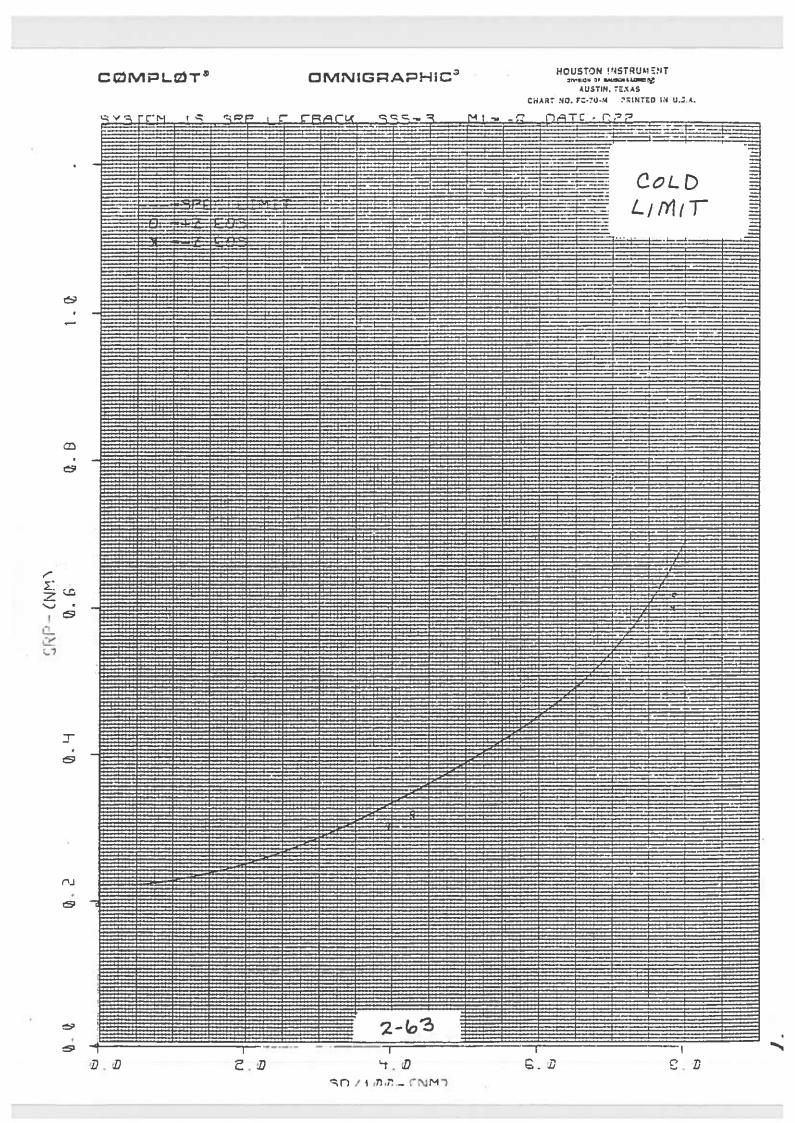
Į.

1

1

LF, DAY, FALLBACK, BACKUP


FLT. NO. = 15	ENV. =	4 SSS=	7DEGC M1= 12DEGC	DATE:	617
SUR. DIST. (NM)	SRP	ACTUAL (N	M) SRP RATIO		
-787. 0. -431. -398. 0. 0. 0.		0. 603 0. 000 0. 319 0. 303 0. 000 0. 198 0. 000	0.908 0.000 0.913 0.910 0.000 0.902 0.000		
398. 431. 0. 788.		0.305 0.322 0.000 0.616	0 919 0. 922 0. 000 0. 926		


LF, DAY, NORMAL, PRIMARY

FLT. NO. = 15 ENV. =	4 SSS= 7DEGC	M1= 12DEGC	DATE:	617
SUR. DIST. (NM) SR	P ACTUAL (NM)	SRP RATIO		
-800. 0. -431. -398. 0. 0. 0. 398.	0. 427 0. 000 0. 280 0. 365 0. 000 0. 215 0. 000 0. 370 0. 286	0.885 0.000 0.857 0.905 0.000 0.895 0.000 0.917 0.877		
431. 0. 800.	0. 288 0. 000 0. 434	0.000		

LF, DAY, NORMAL, BACKUP

FLT. NO. = 15	ENV. =	4 555=	7DEGC M1= 12DEGC	DATE:	617
SUR. DIST. (NM)	SRP	ACTUAL (NM) SRP RATIO		
-800. 0. -431. -398. 0.		0.431 0.000 0.281 0.368 0.000	0.872 0.000 0.862 0.712 0.000		
0. 0. 378.		0.216 0.000 0.373	0. 901 0. 000 0. 924		
431. 0. 800.		0. 288 0. 000 0. 438	0.882 0.000 0.908		

LF, DAY, NORMAL, PRIMARY

FLT. NO. = 15	ENV. =	4 SSS= 3	BDEGC M1= -BDEGC	DATE:	622
SUR. DIST. (NM)	SRP	ACTUAL (NM)	SRP RATIO		
-800.		0. 423	0.876		
-431.		0. 279	0. 854 0. 903		
0. 0.		0.000	0.000		
0. 378.		0.000	0.000		
431 . 0.		0. 284	0.872		
800.		0. 436	0. 703		

11.4

5. ...

LF, DAY, NORMAL, BACKUP

FLT. NO. = 15	ENV. =	4 SSS=	3DEGC	M1= -8DEGC	DATE:	622
SUR. DIST. (NM)	SRP	ACTUAL (N	M) S	RP RATIO		
-800.		0. 427		0. 886		
0.		0.000		0.000		
-431.		0. 281		0.862		
-378.		0. 368		0. 912		
Ο.		0.000		0.000		
0.		0. 215		0. 897		
0.		0.000		0.000		
378.		0. 370		0. 918		
431.		0. 287		0.881		
0.		0. 000		0.000		
800.		0. 441		0. 913		

LF, DAY, FALLBACK, PRIMARY

4

FLT. NO. = 15 ENV. =	4 SSS= 3DEGC	M1= -8DEGC	DATE:	622
SUR. DIST. (NM) SRP	ACTUAL (NM) S	RP RATIO		
-787.	0. 596	0. 878		
0.	0.000	0.000		
-431.	0. 314	0.878		
-398.	0. 298	0. 897		
Ο.	0.000	0.000		
0.	0. 194	0.885		
Ο.	0.000	0.000		
378.	0.303	0. 912		
431.	0.319	0.911		
Ο.	0.000	0.000		
788.	0. 615	0. 924		

ा ्याहा

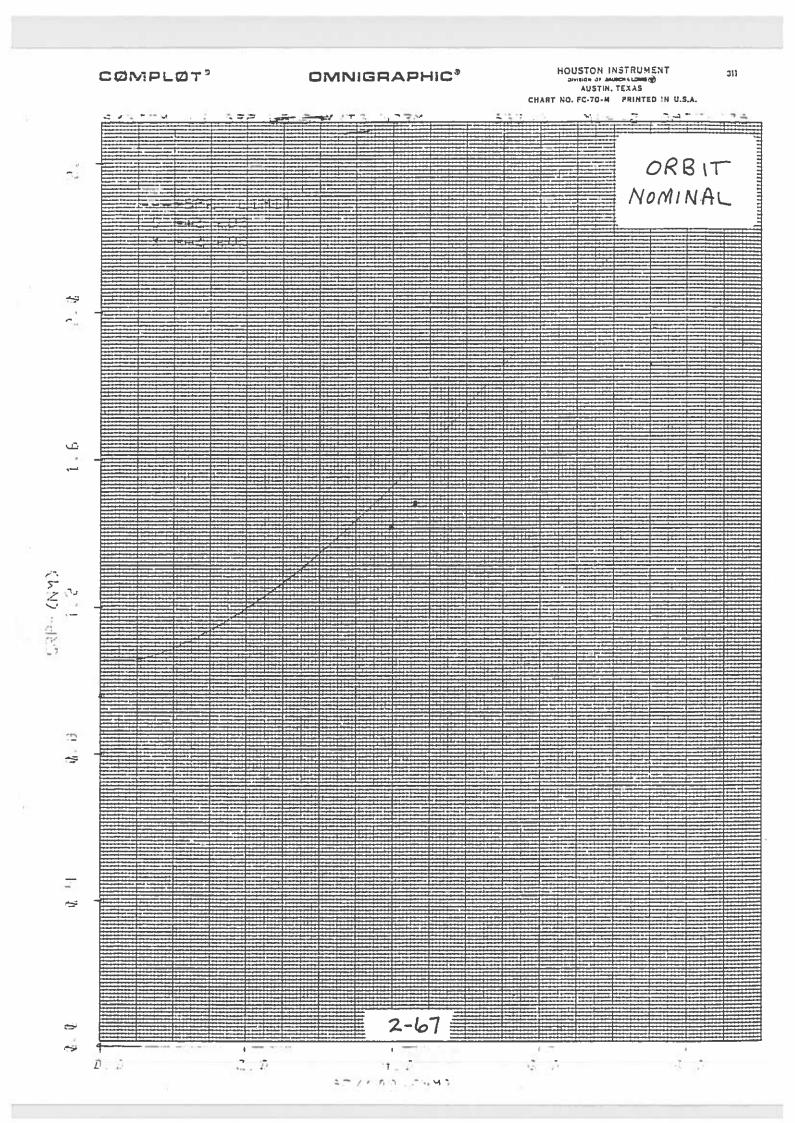
LF, DAY, FALLBACK, BACKUP

FLT. NO. = 15 ENV. =	4 SSS= 3DEGC	M1= -8DEGC	DATE:	622
SUR. DIST. (NM) SR	PACTUAL (NM)	SRP RATIO		
-787.	0. 600	0. 904		
0. -431.	0.000 0.317	0.000 0.908		
-398.	0.301	0.905		
0. 0.	0.000 0.196	0.000 0.874		
0.	0.000	0.000		
378. 431.	0. 306 0. 322	0. 920 0. 920		
0.	0.000	0.000		
788.	0.619	0. 930		

2.2.3 <u>Smoothed Geometric Resolution - Infrared</u> (3.2.1.1.2.2)

2.2.3.1 Baseline (Orbit Nominal)

The TS SRP is within spec for all measured scan angles.


ATTACHMENTS: TS SRP Curve Orbit Nominal 6-29-88 TS SRP Tables Orbit Nominal 6-29-88

d/0782B

2-66

BVS 2414 REV -1

122, 198, 3

÷

FLT. NO. = 15	ENV. = 4 SSS=	5DEGC M1= -8DEGC	DATE:	629
SUR. DIST. (NM)	SRP ACTUAL (N	M) SRP RATIO		
-750.	1.857	0. 826		
0.	0.000	0.000		
-431.	1.482	0. 926		
-378.	1. 419	0. 925		
0.	0.000	0.000		
0.	0. 957	0. 912		
Q.	0.000	0.000		
378.	1.415	0. 723		
431.	1. 477	0. 922		
0.	0.000	0.000		
757.	1. 958	0. 866		

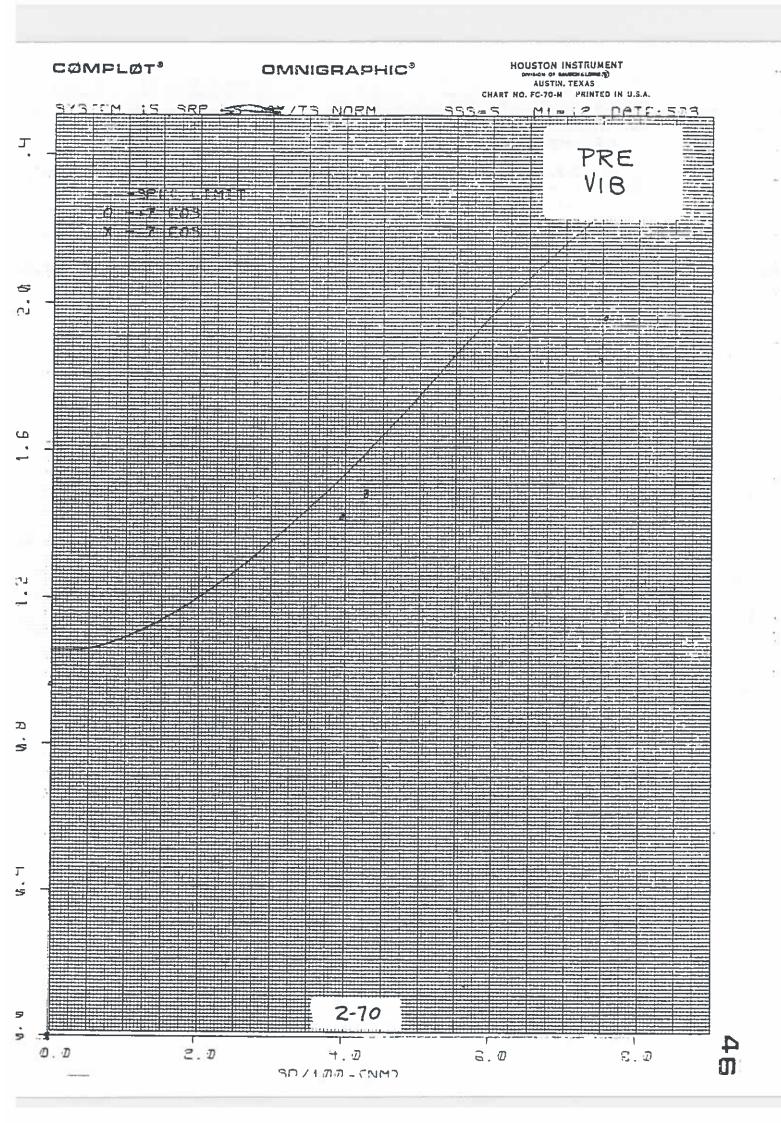
È.

1000

Ser.

TS, MID, BACKUP

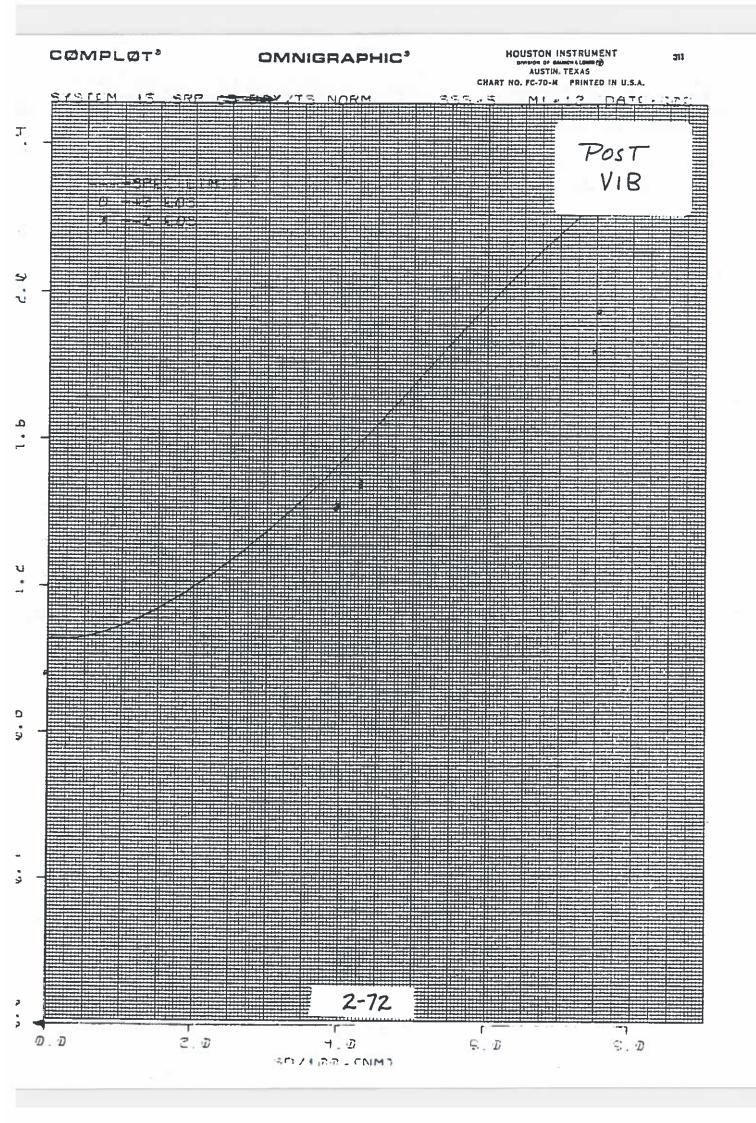
10.75


FLT. NO. = 15	ENV. = 4 S	SS= 5DEGC	M1= -8DEGC	DATE:	629
SUR. DIST. (NM)	SRP ACTU	AL(NM) S	RP RATID		
-750.	1.85	9	0.827		
Ο.	0.00	0	0.000		
-431.	1.48	4	0. 927		
-398.	1. 42	1	0. 926		
0.	0.00	0	0.000		
0.	0. 95	8	0. 913		
0.	0.00	0	0.000		
378.	1. 41	7	0. 924		
431.	1. 47	B	0. 923		
0.	0.00	0	0. 000		
757.	1. 75	8	0.866		

2.2.3 <u>Smoothed Geometric Resolution - Infrared</u> (Cont'd) (3.2.1.1.2.2)
2.2.3.2 <u>Acceptance - Vibration</u>

The TS SRP run in Thermal Vacuum before and after SSS Acceptance Vibration May 12, 1988, show no out-of-specification performance changes in SRP due to vibration.

ATTACHMENTS:	TS SRP Curve Pre-Vibration	5-03-88
	TS SRP Tables Pre-Vibration	5-03-88
	TS SRP Curve Post-Vibration	6-08-88
	TS SRP Tables Post-Vibration	6-08-88


d/07828

FLT. NO. = 15	ENV. =	4 SSS= :	5DEGC M1= 12DEGC	DATE:	503
SUR. DIST. (NM)	SRP	ACTUAL (NM	SRP RATIO		
750. 0. 431. 398.		1.847 0.000 1.489 1.425	0. 821 0. 000 0. 930 0. 929		
0. 0. 0.		0.000 0.960 0.000	0.000 0.914 0.000		
398. 431. 0. 757.		1.415 1.478 0.000 1.960	0. 923 0. 923 0. 000 0. 867		

TS, MID, BACKUP

FLT. NO. = 15 ENV. =	4 SSS= 5DEGC	M1= 12DEGC DA	ATE: 503
SUR. DIST. (NM) SRP	ACTUAL (NM) S	RP RATIO	
-750.	1.845	0.820	
0.	0.000	0.000	
-431.	1.489	0. 930	
-398.	1.425	0. 929	
0.	0.000	0.000	
0.	0. 961	0. 915	
Ο.	0.000	0.000	
398.	1.415	0. 923	
431.	1.478	0. 923	
0.	0.000	0.000	
757.	1.956	0.866	

.

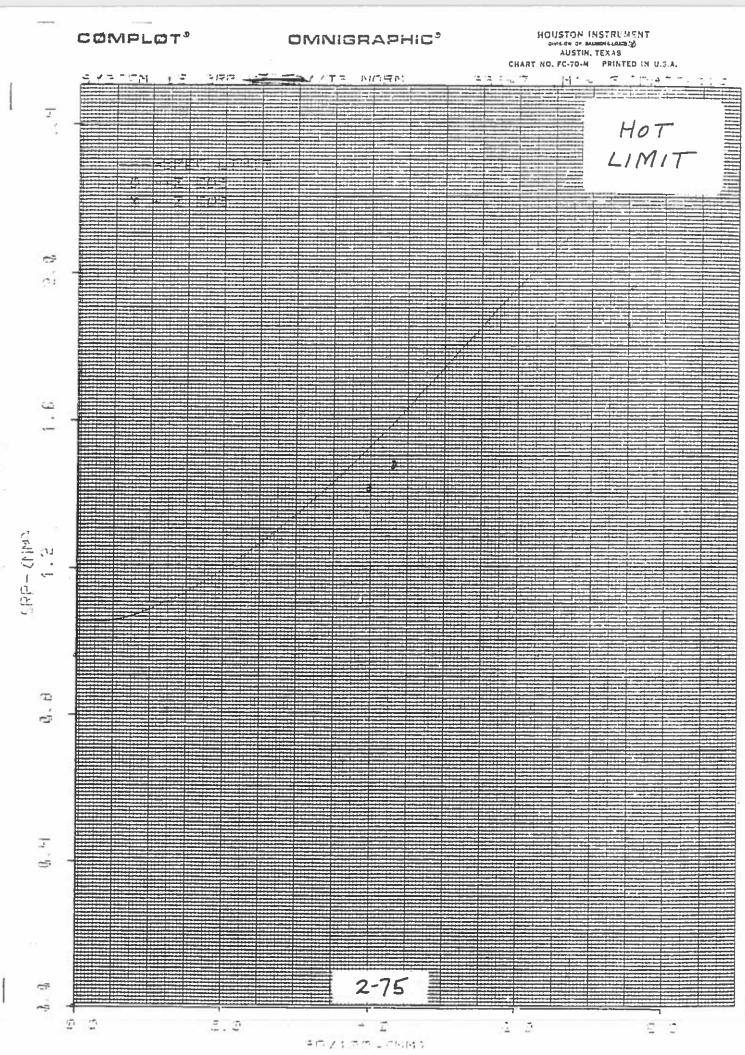
FLT. NO. = 15 ENV. = 4 SSS= 5DEGC M1= 12DEGC DATE. 603 SUR. DIST. (NM) SRP ACTUAL(NM) SRP RATIO

-750.	1.841	0.818
Ο.	0, 000	0,000
-431.	1.485	0. 928
-378.	1.420 :	0.925
О.	0, 000	0. 000
Q.	0. 958	0.913
Ο.	0.000	0,000
378.	1.411	0.920
431.	1.471	0.919
Ο.	0. 000	0.000
757.	1.948	0,862

TS, MID, BACKUP

19111

FLT. $NO_{\star} = 15$	ENV. =	4 SSS= 5	DEGC M1= 12DEGC	DATE:	608
SUR, DIST, (NM)	SRP	ACTUAL (NM)	SRP RATIO		
-750. 0. -431. -398. 0. 0. 398. 431.		1.846 0.000 1.487 1.424 0.000 0.761 0.000 1.414 1.475	0.821 0.000 0.930 0.923 0.000 0.915 0.000 0.922 0.921		
		0.000 1.956			


2.2.3 <u>Smoothed Geometric Resolution - Infrared</u> (3.2.1.1.2.2)

2.2.3.3 Acceptance - Thermal Vacuum

The TS SRP is within spec for the extremes of hot and cold Thermal Vacuum limit testing.

ATTACHMENTS:	TS	SRP	Curve	Hot Limits	6-18-88
	TS	SRP	Tables	Hot Limits	6-18-88
	TS	SRP	Curve	Cold Limits	6-24-88
	TS	SRP	Tables	Cold Limits	6-24-88

d/0782B

C

4

FLT. NO. = 15	ENV. =	4 SSS=	7DEGC M1=	12DEGC	DATE:	618
SUR. DIST. (NM)	SRP	ACTUAL (N	1) SRP RA	TIO		
-750. 0. -431. -398.		1.858 0.000 1.487 1.423	0.82 0.00 0.92 0.92	0 9		
0. 0. 0.		0.000 0.961 0.000	0.00 0.91 0.00	5		
398. 431. 0.		1.415 1.476 0.000	0.92 0.92 0.00	2		
757.		1. 962	0.86	-		

ŝ

Ŧ,

ŗ.

TS, MID, BACKUP

. ...

100

FLT. NO. = 15 ENV.	= 4 SSS= 7DE	GC M1= 12DEGC	DATE:	618
SUR. DIST. (NM) S	RP ACTUAL (NM)	SRP RATIO		
-750. 0.	1.872	0.833		
-431. -398.	1.496	0. 934		
0. 0.	0.000	0.000		3
0. 398.	0.000 1.424	0.000 0.928		
431.	1.485 0.000	0.927 0.000		
757.	1.978	0.875		

HOUSTCH INSTRUMENT COMPLOT[®] OMNIGRAPHIC[®] CHART NO. FC-TO-N PRINTED IN U.S.A. 1 6.256 NORM 4 2.7.7 2 CT 3 6-1-5. 3 فحقه 4 COLD LIMIT т Н Ċ? d' ; 9 ; 582- 1835 1- 81 T, 6 ₽. . P 2-77 $f_{\mathcal{D}'}$ 2 4 r 1 ſ 0 0 2.0 0.0

H. 7 3777 D.D. J. M.S. 2 5

4 旧

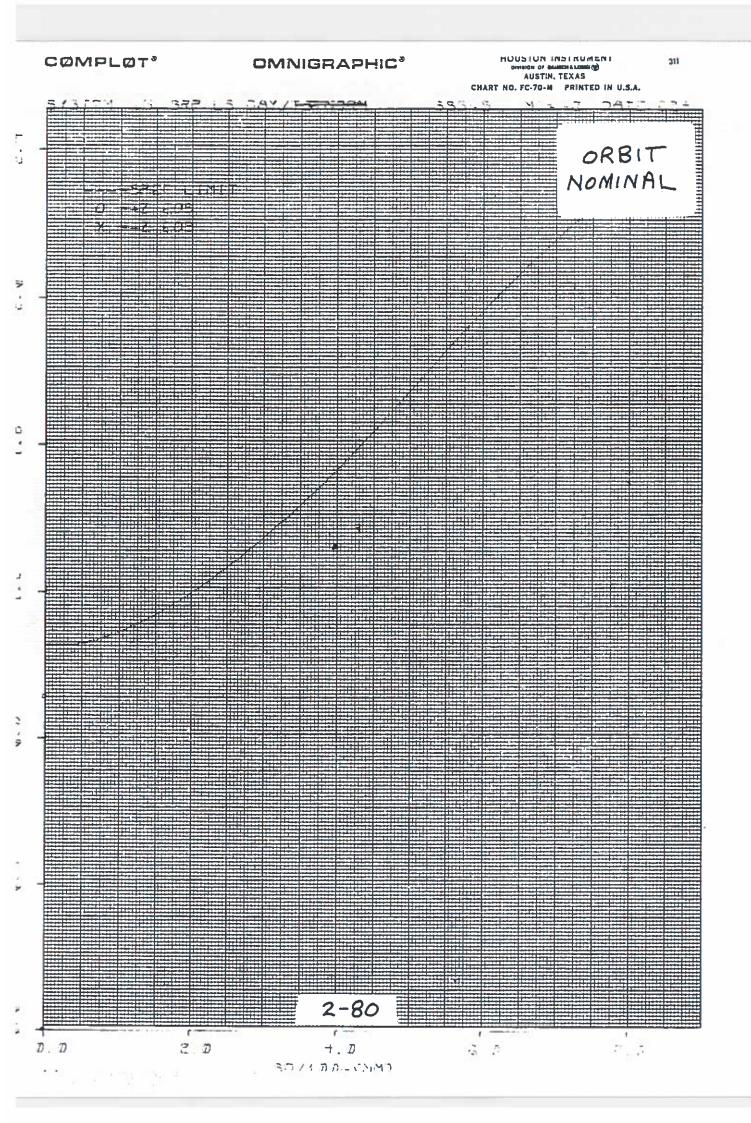
FLT. NO. = 15	ENV. =	4 SSS=	3DEGC M1= -8DE	EGC DATE: 624
SUR. DIST. (NM)	SRP	ACTUAL (N	SRP RATIO	
-750.		1.852	0. 823	
0.		0.000	0.000	
-431.		1.473	0. 920	
-398.		1.412	0. 920	
0.		0.000	0.000	
0.		0. 951	0. 905	
0.		0.000	0.000	
378.		1.406	0. 917	
431.		1.465	0. 915	
0.		0.000	0.000	
757.		1. 943	0.860	

ş

TS, MID, BACKUP

FLT. NO. = 15	ENV. =	4 SSS= 3	DEGC M1= -8DEGC	DATE:	624
SUR. DIST. (NM)	SRP	ACTUAL (NM)	SRP RATIO		
-750. 0. -431. -398. 0. 0. 0.		1.866 0.000 1.483 1.421 0.000 0.957 0.000	0.830 0.000 0.926 0.926 0.000 0.912 0.000		
398. 431. 0. 757.		1.415 1.475 0.000 1.962	0. 723 0. 721 0. 000 0. 868		

2.2.4 <u>Smoothed Geometric Resolution - Daytime Visual</u> (3.2.1.1.2.2)
2.2.4.1 <u>Baseline (Orbit Nominal)</u>


2-79

The LS Day SRP is within spec limits at Orbit Nominal conditions.

ATTACHMENTS: LS Day SRP Curve - Orbit Nominal 6-29-88 LS Day SRP Tables - Orbit Nominal 6-29-88

d/07828

BVS 2414 REV -

LS, DAY, NORMAL, PRIMARY

FLT. NO. = 15	ENV. ≓	4 SSS=	5DEGC	M1= -80)EGC	DATE:	629
SUR. DIST. (NM)	SRP	ACTUAL (N	M) s	SRP RATIO)		
-800.		1. 497		0. 637			~
Ο.		0.000		0.000			
-431.		1.366		0.853			
-378.		1.324		0.863			
Ο.		0.000		0.000			
0.		0. 912		0.868			
0.		0.000		0.000			
378.		1. 321		0.862			
431. 🗉		1.379		0.861			
0.		0.000		0.000			
800.		1. 527		0. 650			

LS, DAY, NORMAL, BACKUP

Ο.

800.

FLT. NO. = 15 ENV. = 4 SSS= 5DEGC M1= -8DEGC DATE: 629 SUR. DIST. (NM) SRP ACTUAL (NM) SRP RATIO -800. 1.496 0.637 Ο. 0.000 0.000 -431. 1.364 0.852 -378. 1.323 0.863 0. 0.000 0.000 0. 0. 711 0.868 0.000 0. 0.000 378. 1.320 0.861 431. 1.377 0.860

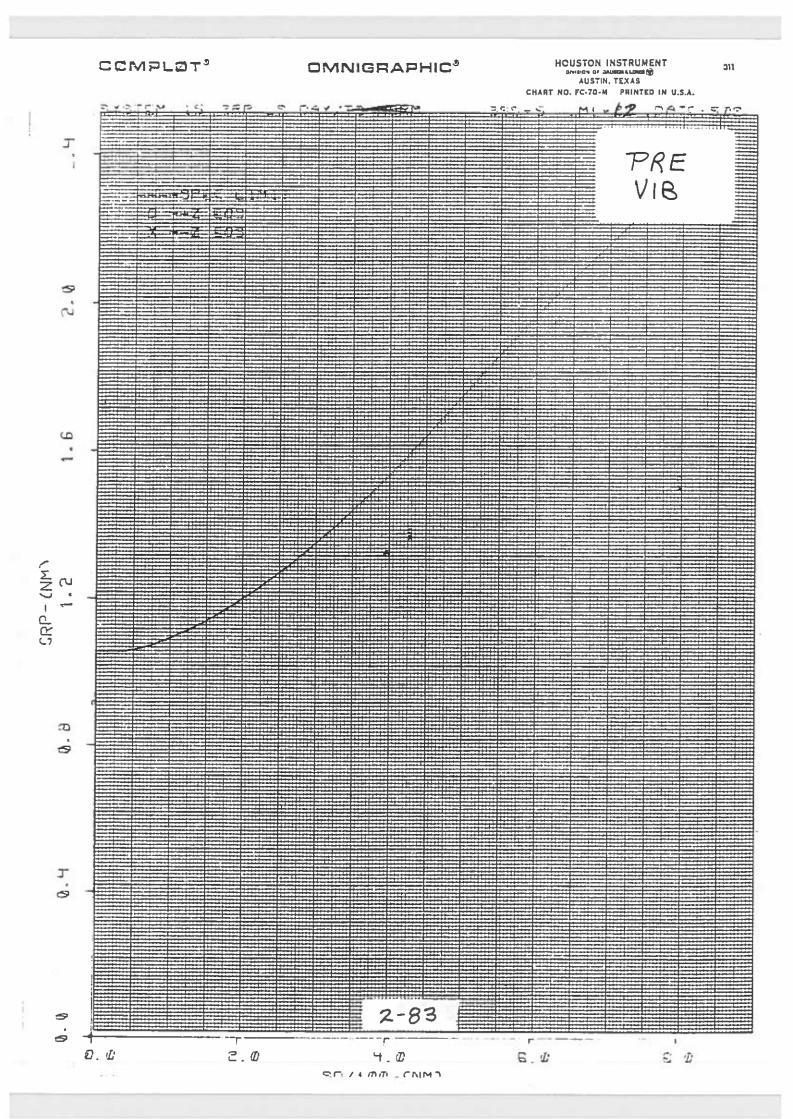
0.000

0.649

0.000

1. 525

2.2.4 <u>Smoothed Geometric Resolution - Daytime Visual</u> (Cont'd) (3.2.1.1.2.2)


2.2.4.2 Acceptance - Vibration

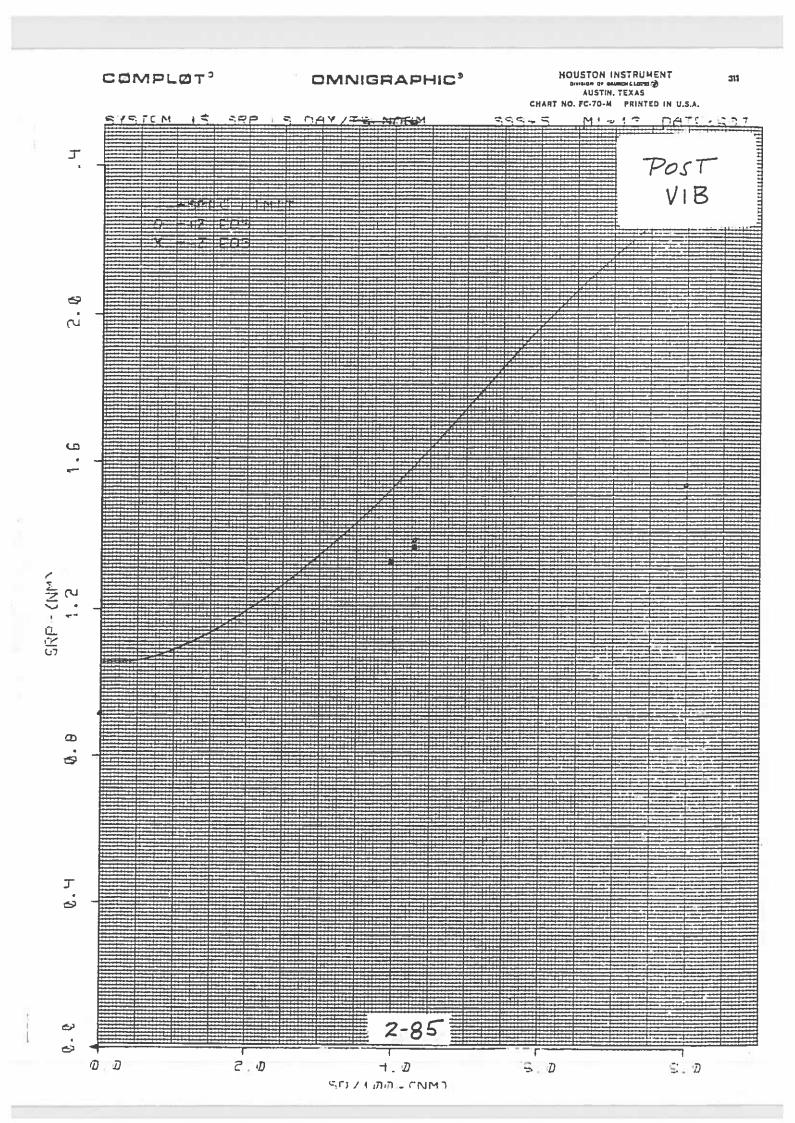
The OLS #15 SSS underwent vibrations on May 12, 1988. The LS Day SRP is within specification both before and after SSS Acceptance level vibration. No vibration-related changes in SRP were observed.

ATTACHMENTS:	LS Da	y SRP	Curve	Pre-Vibrtion	5-02-88
	LS Da	y SRP	Tables	Pre-Vibration	5-02-88
	LS Da	y SRP	Curve	Post-Vibration	6-07-88
	LS Da	y SRP	Table	Post-Vibration	6-07-88

d/07828

BVS 2414 REV -

LS, DAY, NORMAL, PRIMARY


FLT. NO. = 15	ENV. =	4 SSS=	5DEGC	12- M1= 20DEGC	DATE:	502
SUR. DIST. (NM)	SRP	ACTUAL (NI	M) S	RP RATIO		
-800. 0. -431. -398. 0. 0. 0. 398. 431. 0. 800.		1.499 0.000 1.365 1.326 0.000 0.913 0.000 1.321 1.383 0.000 1.528		0. 638 0. 000 0. 853 0. 864 0. 000 0. 870 0. 000 0. 862 0. 863 0. 000 0. 650		

LS, DAY, NORMAL, BACKUP

FLT. NO. = 15 ENV. = 4 SSS= 5DEGC	M1= 20DEGC	DATE: 502
-----------------------------------	------------	-----------

÷

SUR. DIST. (NM)	SRP ACTUAL (NM)	SRP RATIO
-800.	1. 500	0. 638
Ο.	0.000	0.000
-431.	1.366	0.853
~398.	1.327	0.865
0.	0.000	0.000
0.	0. 914	0.870
Ο.	0.000	0.000
398.	1.322	0.862
431.	1. 383	0.864
0.	0. 000	0.000
BOO.	1.529	0.651

LS, DAY, NORMAL, PRIMARY

FLT. NO. = 15	ENV. =	4 SSS=	5DEGC	M1= 12DEGC	DATE.	607
SUR. DIST. (NM)	SRP	ACTUAL (N	M) SF	RP RATIO		
-800. 0. -431. -378.		1.505 0.000 1.369 1.330		0.641 0.000 0.855 0.867		
0. 0. 0. 0.		0.000 0.714 0.000		0.000 0.871 0.000		
398. 431. 0.		1.327 1.387 0.000		0.865 0.866 0.000		
800.		1.537		0.654		

Į

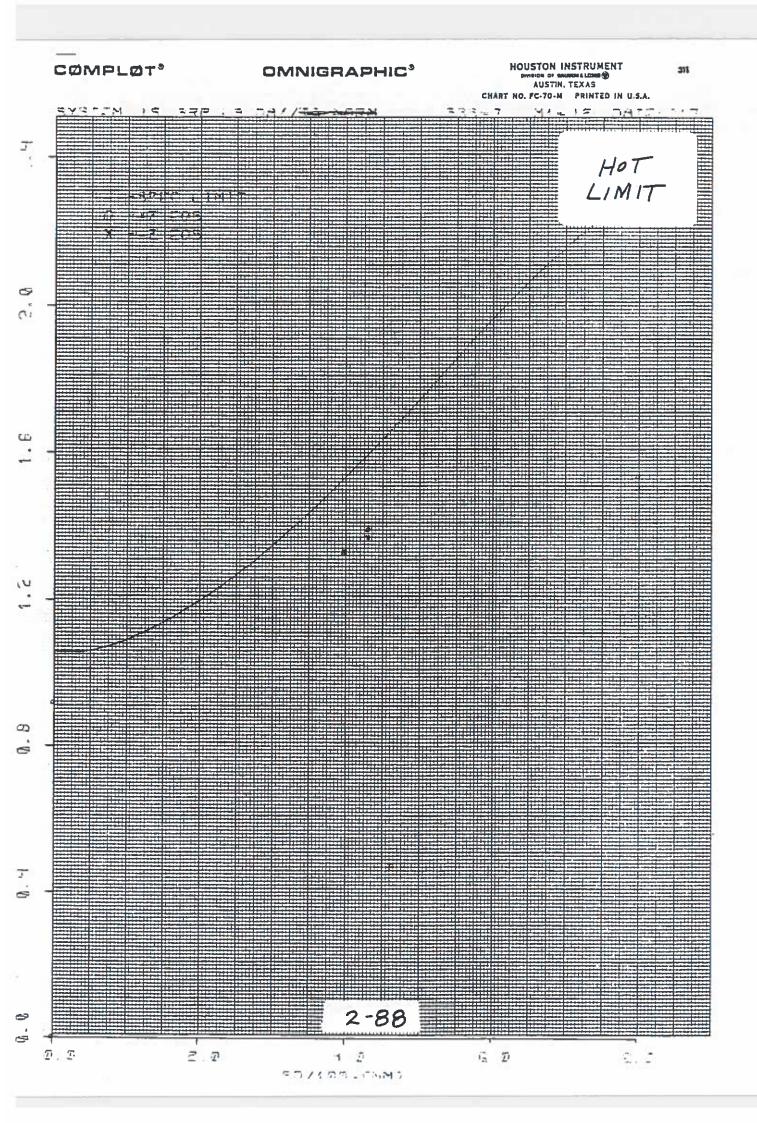
ŧ.

1,

LS, DAY, NORMAL, BACKUP

FLT. NO. = 15 8	ENV. = 4 SSS= 5	DEGC M1= 12DEGC	DATE:	407
SUR. DIST. (NM)	SRP ACTUAL (NM)	SRP RATIO		
-800.	1.504	0.640		
Q.	0.000	0.000		
-431.	1.367	0.854		
-398.	1.329	0.865		
Ο.	0.000	0.000		
Ο.	0.914	0.870		
О.	0.000	0.000		
378.	1.326	0.865		
431.	1.386	0.866		
Q.	0,000	0.000		
800.	1.536	0. 654		

2.2 <u>Geometric Resolution</u> (Cont'd)

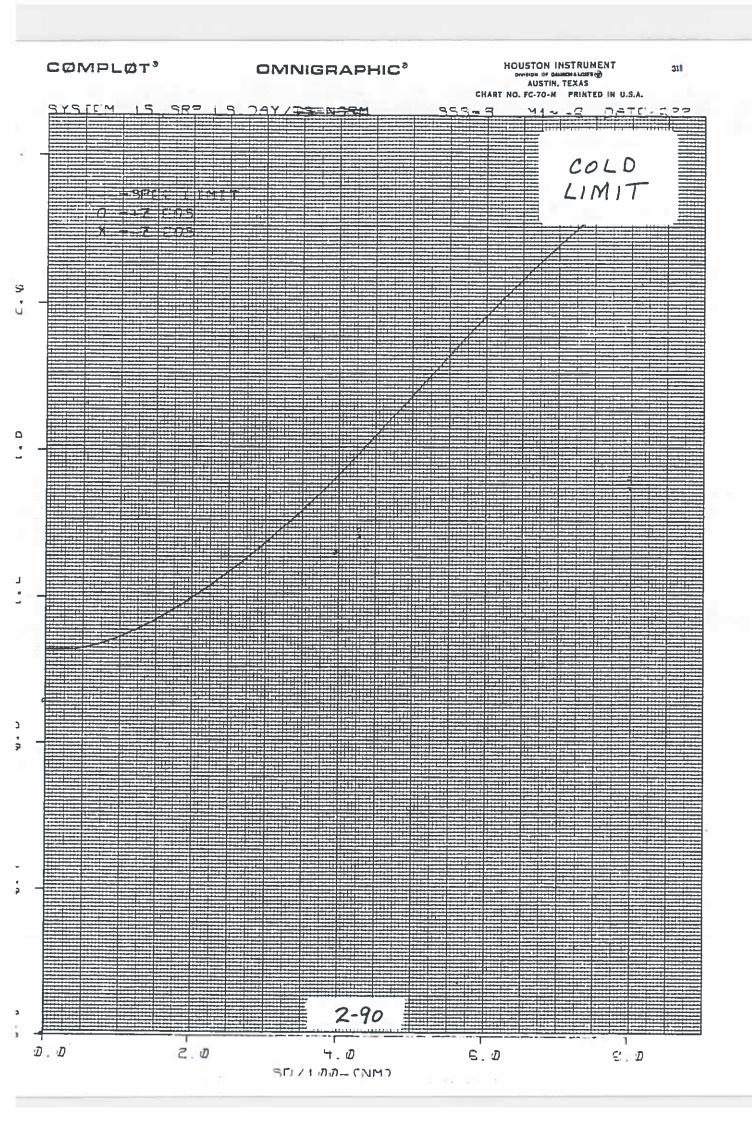

2.2.4 <u>Smoothed Geometric Resolution - Daytime Visual</u> (Cont'd)

(3.2.1.1.2.2)

2.2.4.3 Acceptance - Thermal Vacuum

The LS Day SRP is well within specification allowance, over the entire range of Acceptance temperatures.

ATTACHMENTS:	LS	Day	SRP	Curve	Hot Limits	6-17-88
	LS	Day	SRP	Tables	Hot Limits	6-17-88
	LS	Day	SRP	Curve	Cold Limits	6-22-88
	LS	Day	SRP	Tables	Cold Limits	6-22-88


LS, DAY, NORMAL, PRIMARY

FLT. NO. = 15 ENV	. = 4 SSS= 7DEG	C M1= 12DEGC	DATE: 617
SUR. DIST. (NM)	SRP ACTUAL (NM)	SRP RATIO	
-800. 0. -431.	1.503 0.000 1.368	0. 440 0. 000 0. 854	
-398. 0.	1.330 0.000 0.716	0.867 0.000 0.872	
0. 0. 378.	0. 000 1. 326	0. 872 0. 000 0. 865	
431. 0.	1.387 0.000	0.867 0.000	
800.	1.534	0. 653	

LS, DAY, NORMAL, BACKUP

FLT. NO. = 15 ENV. = 4 SSS= 7DEGC M1= 12DEGC DATE: 617

SUR. DIST. (NM)	SRP ACTUAL (NM)	SRP RATIO
-800.	1. 497	0. 637
Q.	0.000	0.000
-431.	1. 362	0.851
-378.	1.325	0.864
0.	0.000	0.000
0.	0. 912	0.869
Ο.	0.000	0.000
378.	1. 322	0.862
431.	1. 384	0.864
0.	0.000	0.000
800.	1. 529	0. 650

LS, DAY, NORMAL, PRIMARY

ŧ.

FLT. NO. = 15	ENV. =	4 SSS=	3DEGC	M1= -8DEGC	DATE:	622
SUR. DIST. (NM)	SRP	ACTUAL (N	M) SI	RP RATIO		
-800.		1.498		0. 637		
Ο.		0.000		0.000		
-431.		1.366		0.853		
-378.		1.326		0.864		
Q .		0.000		0.000		
Ο.		0. 914		0.870		
Ο.		0.000		0.000		
378.		1. 323		0.863		
431.		1.383		0.863		
0.		0.000		0.000		
800.		1. 528		0. 650		

LS, DAY, NORMAL, BACKUP

FLT. NO. = 15 ENV. = 4 SSS= 3DEGC M1= -8DEGC DATE: 622

SUR. DIST. (NM)	SRP ACTUAL (NM)	SRP RATIO
-800.	1. 494	0. 636
0.	0. 000	0.000
-431.	1.362	0.851
-378.	1.322	0.862
0.	0.000	0.000
0.	0. 911	0.868
Ο.	0.000	0.000
378.	1.319	0.860
431.	1.379	0.861
0.	0.000	0.000
800.	1. 524	0. 648

2.2 <u>Geometric Resolution</u> (Cont'd)

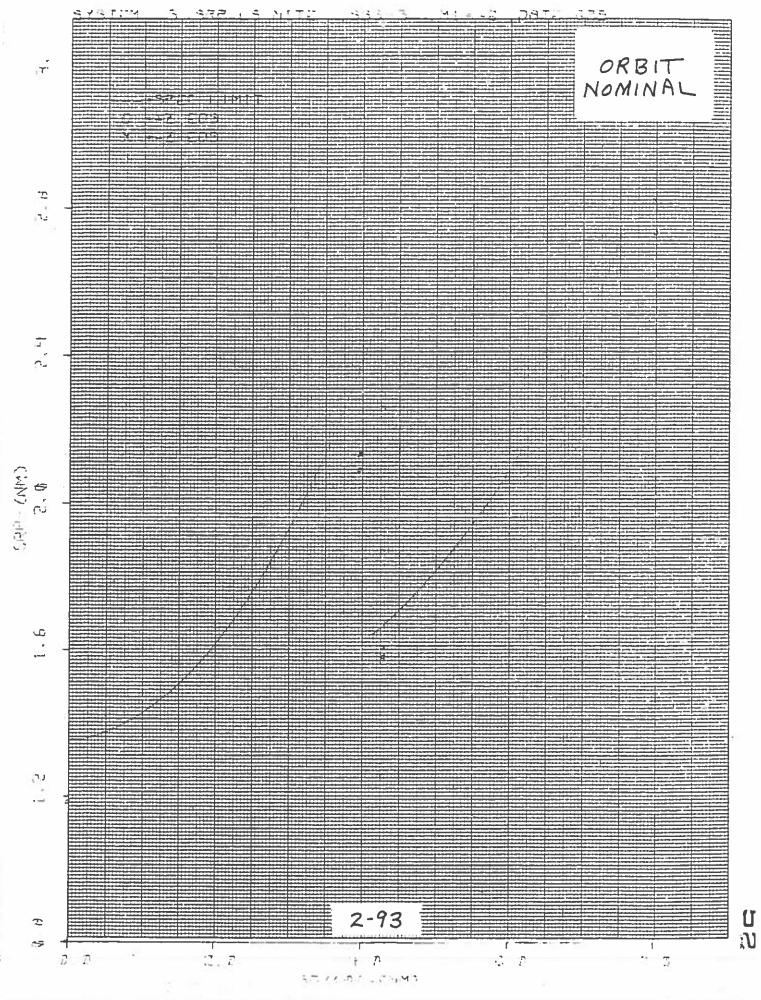
2.2.5 <u>Smoothed Geometric Resolution - Nighttime Visual</u> (3.2.1.1.2.2)

LS Night SRP routinely is deliberately adjusted to be close to spec limit during system integration in order to optimize PMT signal-to-noise ratio, at the expense of SRP margin.

2.2.5.1 Baseline (Orbit Nominal)

The LS Night SRP is within spec for all measured scan angles

ATTACHMENTS: LS Night SRP Curve - Orbit Nominal 6-29-88 LS Night SRP Table - Orbit Nominal 6-29-88


d/07828

2-92

CØMPLØT

OMNIGRAPHIC'

HOUSTON INSTRUMENT Overlege of Sameralder T AUSTIN, TEXAS CHART NO. FC-70-M PRINTED (N U.S.A.

LS, NITE, NORMAL, PRIMARY

FLT. NO. = 15	ENV. =	4 SSS= 5	DEGC M1= -BDEGC	DATE:	629
SUR. DIST. (NM)	SRP	ACTUAL (NM)	SRP RATIO		
-799. 0. -430. -397. 0.		2.819 0.000 1.607 2.132 0.000	0.941 0.000 0.962 0.895 0.000		
0. 0. 397. 430. 0. 801.		1. 182 0. 000 2. 087 1. 580 0. 000 2. 732	0.876 0.000 0.877 0.946 0.000 0.908		

Provide a

14 × 14

Γ

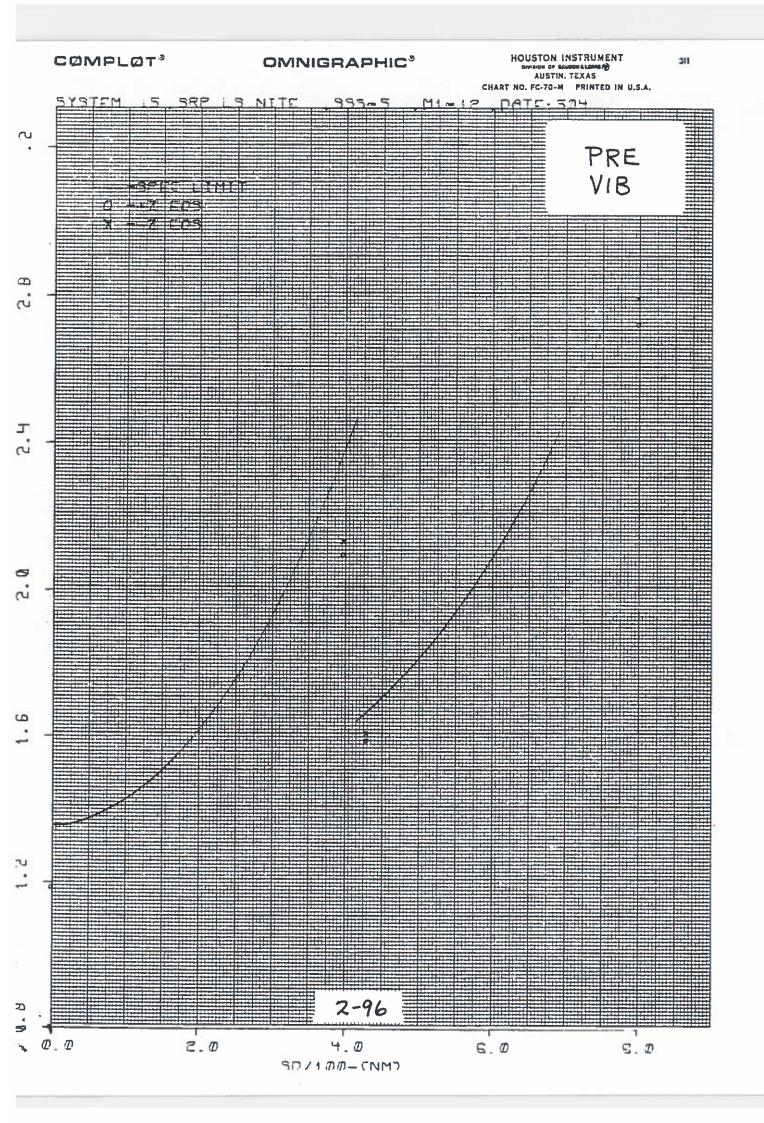
£

LS, NITE, NORMAL, BACKUP

FLT. NO. = 15	ENV. =	4 SSS=	SDEGC M	1= -8DEGC	DATE:	629
SUR. DIST. (NM)	SRP		1) SRP	RATIO		
-799.		2. 845	0.	950		
0.		0.000	0.	000		
-430.		1.611	0.	964		
-397.		2.150	0.	903		
0.		0.000	0.	000		
0.		1.188	0.	880		
Ο.		0.000	0.	000		
397.		2.107	0.	884		
430.		1. 584	0.	748		
Ο.		0.000	Q.	000		
801.		2. 758	0.	917		

2.2 <u>Geometric Resolution</u> (Cont'd)

2.2.5 <u>Smoothed Geometric Resolution - Nighttime</u>

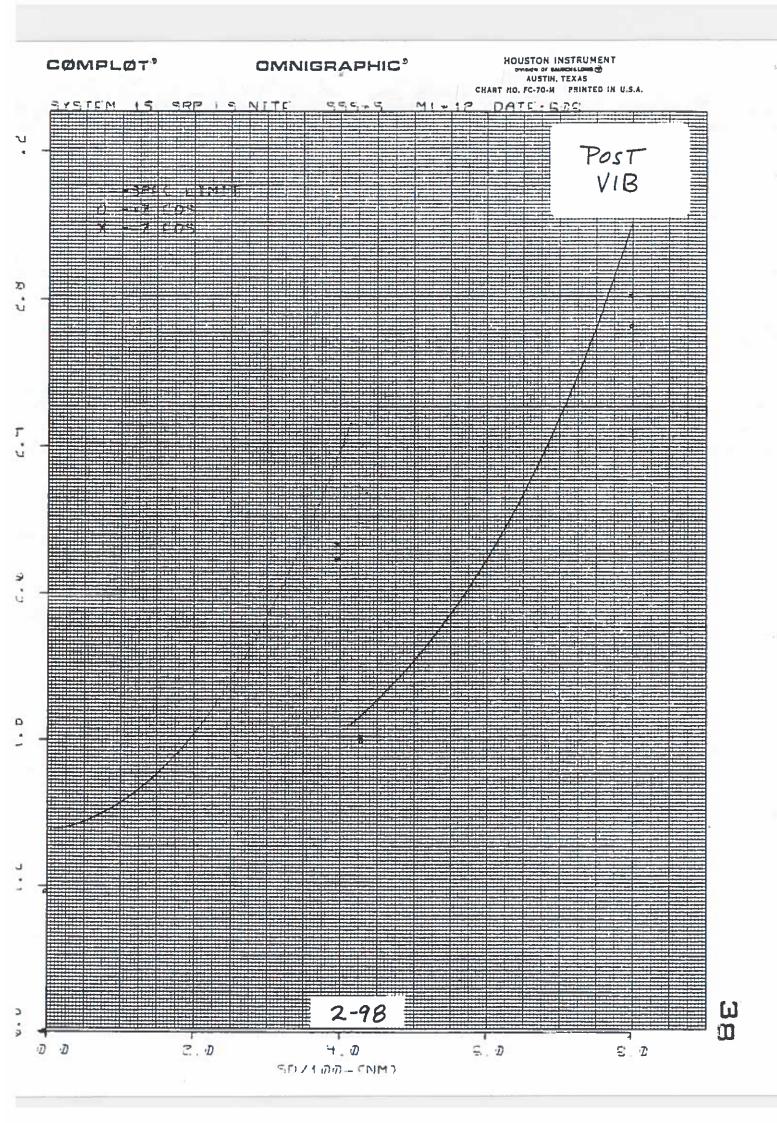

<u>Visual</u> (Cont'd) (3.1.2.2)

2.2.5.2 Acceptance - Vibration

The LS Night SRP is within specification before and after SSS vibration. No vibration-induced changes in SRP were observed.

ATTACHMENTS:	LS Night	SRP Curve	Pre-Vibration	5-04-88
	LS Night	SRP Tables	Pre-Vibration	5-04-88
	LS Night	SRP Curve	Post-Vibration	6-06-88
	LS Night	SRP Tables	Post-Vibration	6-06-88

d/07828



LS, NITE, NORMAL, PRIMARY

FLT. NO. = 15 ENV	/. = 4 SSS= 51	DEGC M1= 12DEGC	DATE:	504
SUR. DIST. (NM)	SRP ACTUAL (NM)	SRP RATIO		
-799. 0. -430. -397. 0.	2.791 0.000 1.608 2.131 0.000	0.932 0.000 0.962 0.895 0.000		
0. 0. 397. 430. 0. 801.	1. 184 0. 000 2. 074 1. 588 0. 000 2. 721	0.877 0.000 0.879 0.950 0.000 0.905		

LS, NITE, NORMAL, BACKUP

FLT. NO. = 15	ENV. =	4 SSS= 5DEG	C M1= 12DEGC	DATE:	504
SUR. DIST. (NM)	SRP	ACTUAL (NM)	SRP RATIO		
-799. 0. -430. -397. 0. 0. 0. 397. 430.		2.820 0.000 1.615 2.151 0.000 1.191 0.000 2.114 1.595	0.942 0.000 0.967 0.903 0.000 0.882 0.000 0.888 0.955		
0. 801.		0. 000 2. 750	0.000 0.914		

LS, NITE, NORMAL, PRIMARY

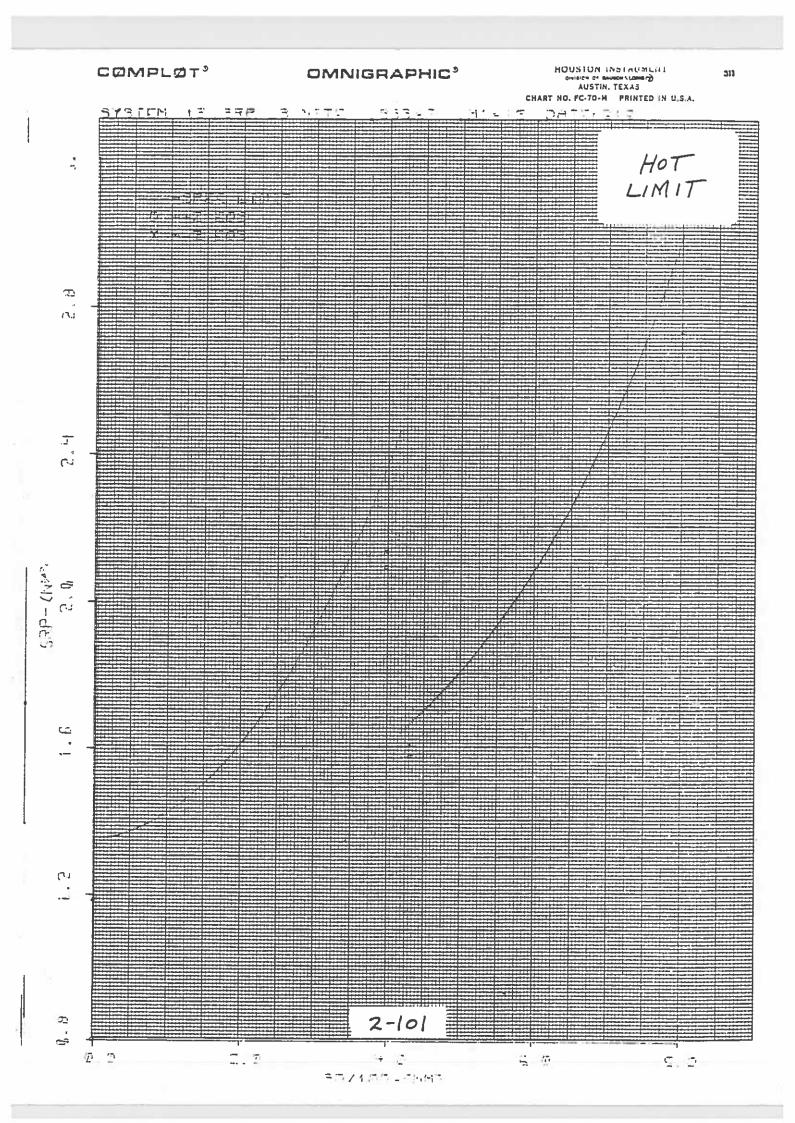
1

FLT. NO. = 15	ENV. =	4 555=	5DEGC M1= 12DEGC	DATE	608
SUR. DIST. (NM)	SRP	ACTUAL (NP	1) SRP RATIO		
-799. 0. -430. -397. 0. 0. 0. 397. 430. 0. 801.		2.810 0.000 1.407 2.133 0.000 1.183 0.000 2.092 1.593 0.000 2.727	0. 938 0. 000 0. 962 0. 895 0. 000 0. 875 0. 000 0. 878 0. 953 0. 900 0. 907		

LS, NITE, NORMAL, BACKUP

FLT. NO. = 15	ENV. =	4 SSS= 51	EGC M1= 12DEGC	DATE: 608
SUR. DIST. (NM)	SRP	ACTUAL (NM)	SRP RATIO	
-799. 0. -430. -397. 0. 0. 397. 430. 0.	2	2.838 0.000 1.614 2.153 0.000 1.192 0.000 2.112 1.600 0.000	0.948 0.000 0.946 0.904 0.000 0.882 0.000 0.887 0.958 0.000	
801		2.755	0.915	

- 2.2 Geometric Resolution (Cont'd)
 - 2.2.5 <u>Smoothed Geometric Resolution Nighttime</u>

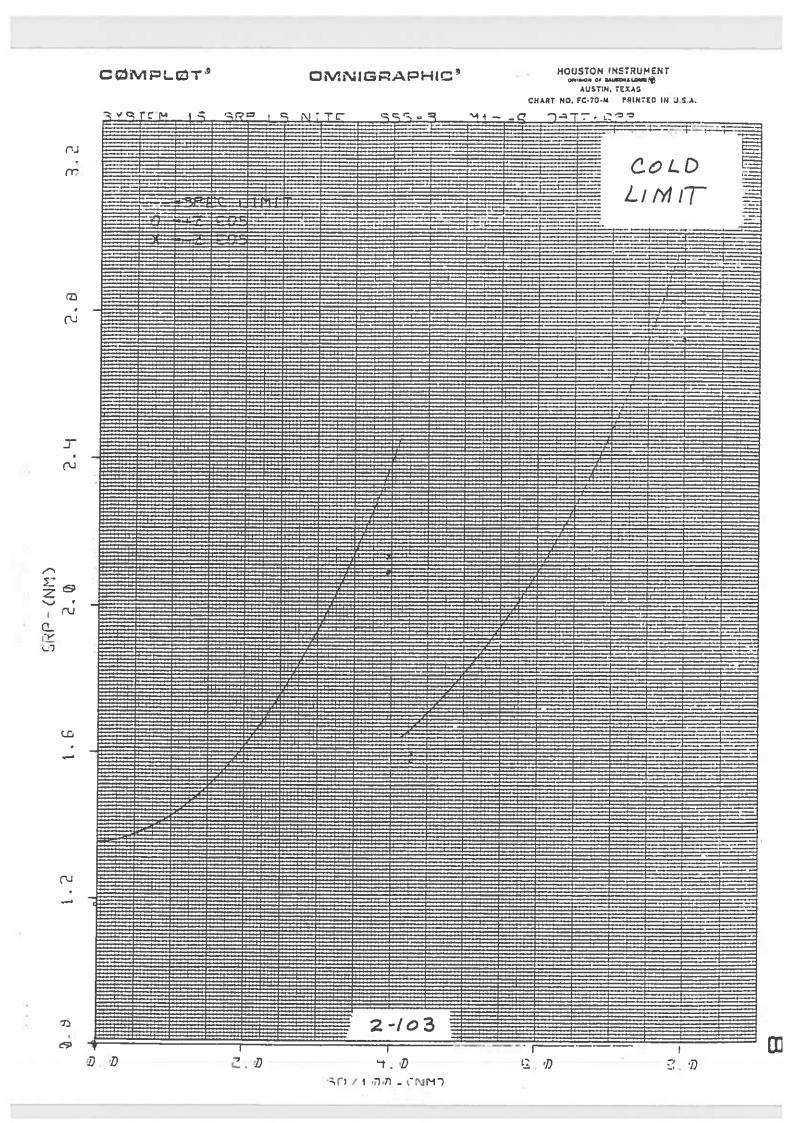

<u>Visual</u> (Cont'd) (3.1.2.2)

2.2.5.3 Acceptance - Thermal Vacuum

The LS Night SRP is within specification limits over the Acceptance temperature range. No temperature-related changes in SRP over the Acceptance temperature range were observed.

ATTACHMENTS:	LS Night SRP	Curve	Hot Limits	6-18-88
	LS Night SRP	Tables	Hot Limits	6-18-88
	LS Night SRP	Curve	Cold Limits	6-22-88
	LS Night SRP	Tables	Cold Limits	6-22-88

d/07828



LS, NITE, NORMAL, PRIMARY

FLT. NO. = 15	ENV. = 4	SSS= 7DEGC	M1= 12DEGC	DATE:	618
SUR. DIST. (NM)	SRP ACT	UAL (NM) S	RP RATIO		
-799. 0.	2.8		0.941		
-430. -397.	1.6	11	0.000		
0. 0.	0.00	00	0.896		
0. 397.	0.00	00	0.877		
430.	1. 5	79	0.879 0.945		
801.	2. 73		0.000		

LS, NITE, NORMAL, BACKUP

FLT. NO. = 15	ENV. =	4 SSS= 7	DEGC M1= 12DEGC	DATE:	618
SUR. DIST. (NM)	SRP	ACTUAL (NM)	SRP RATIO		
-799. 0. -430.		2.843 0.000 1.620	0. 949 0. 000 0. 969		
~397. 0. 0.		2.154 0.000 1.173	0. 904 0. 000 0. 884		
0. 397. 430.		0.000 2.112 1.587	0.000 0.887 0.949		
0. 801.		0.000 2.759	0. 000 0. 917		

LS, NITE, NORMAL, PRIMARY

4

FLT. NO. = 15 ENV. =	4 555= 3DEG	M1= -BDEGC	DATE:	622
SUR. DIST. (NM) SRP	ACTUAL (NM)	SRP RATIO		
-799.	2. 823	0. 943		
Ο.	0.000	0.000		
-430.	1. 597	0. 956		
-397.	2.132	0. 895		
0.	0.000	0.000		
0.	1. 180	0.874		
0.	0.000	0.000		
397.	2.090	0.877		
430.	1. 576	0. 943		
0.	0.000	0.000		
801.	2. 720	0. 904		

Pillin

10111

ŀ.

5

ſ

LS, NITE, NORMAL, BACKUP

FLT. NO. = 15 ENV. =	4 SSS= 3DEGC	M1= -8DEGC	DATE: 622
SUR. DIST. (NM) SRP	ACTUAL (NM) S	RP RATIO	
-799.	2. 837	0. 947	
O .	0.000	0.000	
-430.	1. 596	0. 955	
-397.	2.142	0.877	
0.	0.000	0.000	
Q.	1.183	0.876	
0.	0.000	0.000	
397.	2.100	0.882	
430.	1. 575	0. 942	
0.	0.000	0.000	
801.	2. 734	0. 909	a contract of the second s

2.2 <u>Geometric Resolution</u> (Cont'd)

2.2.6 Data Sampling (3.2.1.1.2.3)

The sampling frequency ratios for all modes of the 5D-3 OLS satisfy the specification requirements. The calculations are contained in the 5D-3 OLS System Summary Report. The results are summarized below. The worst-case sampling frequency ratio for each mode is given.

	MODE	SAMPLING	FREQ.	<u>RATIO (</u> SI	pec: >	2.4))
LF	Day - Normal		2.58				
LF	Day - Fallback		2.61				
LS	& TS Day - Normal		2.50				
LS	Night - Normal		2.66				
TF	- Normal		3.44				
TF	Fallback - Normal Side of scar	n I	3.28				
TF	Fallback - Abnormal Side of Sc	an	3.28				

BVS 2414 REV -

d/07828

2.3 <u>Geometric Accuracy</u> (3.2.1.1.3.1, 3.2.1.1.3.2, 3.2.1.1.3.3)

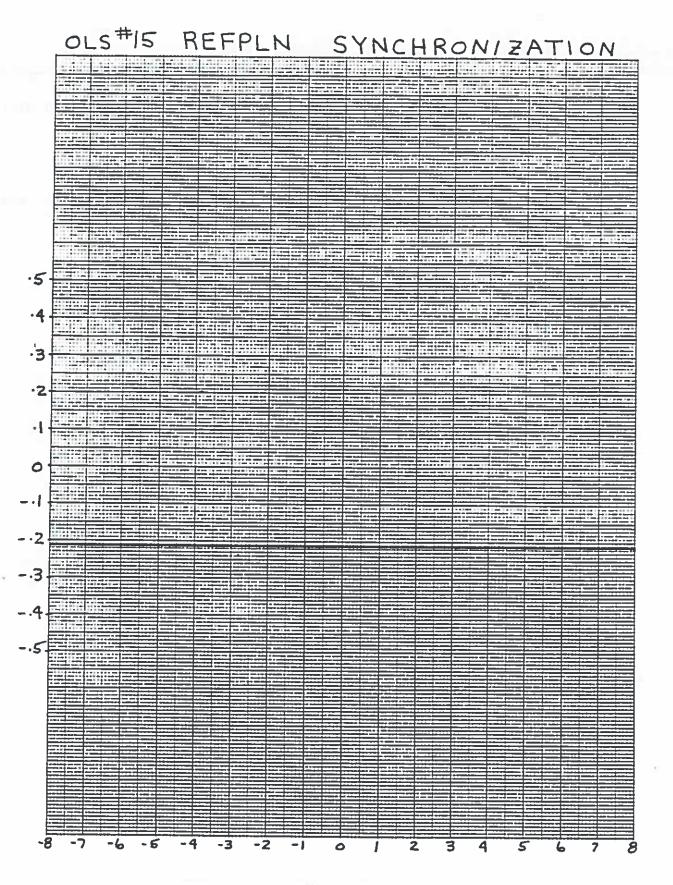
The alignment and synchronization of the SSS determine the Geometric Accuracy. Geometric accuracy is specified in 3 categories (Repeatability, Stability & Fixed Errors). Within these categories, accuracy is further specified for Along Track, Along Scan (Stored Data), Along Scan (Direct Data), and Along Scan (with digital delphi generation, i.e., the Encoder Simulator locked mode). The results of the OLS #15 Alignment and Syncronization tests for all modes are within specification.

There was an observed shift in alignment between the extremes of M1 temperature of -8°C and +12°C on the order of less than 0.1 milliradians for all channels. There was also an observed shift in synchronization in all modes in OLS #15 of approximately 0.1 milliradians between M1 temperature extremes of -8°C and +12°. Therefore, in the calcuation of the Repeatability error, the rms difference of the Hot and Cold data from the average of the Hot and Cold data was used. The Repeatability error was calculated as the rms difference of the measured alignment/synchronization (as a function of the variation of M1 temperature on orbit) from the hot-to-cold average synchronization/alignment. The total Repeatability contribution for synchronization is determined by rss'ing the wow-flutter error (as measured in test 6x11.ST) and the jitter error (which was negligible on OLS #15) with the repeatability shift between Hot and Cold Limits.

The Primary Alignment Reference Axes (REFPLN) are calculated in a computer program using HRD & T channel Alignment and Sync data from several Orbit Nominal tests. The data determine a best-fit alignment with respect to

2-106

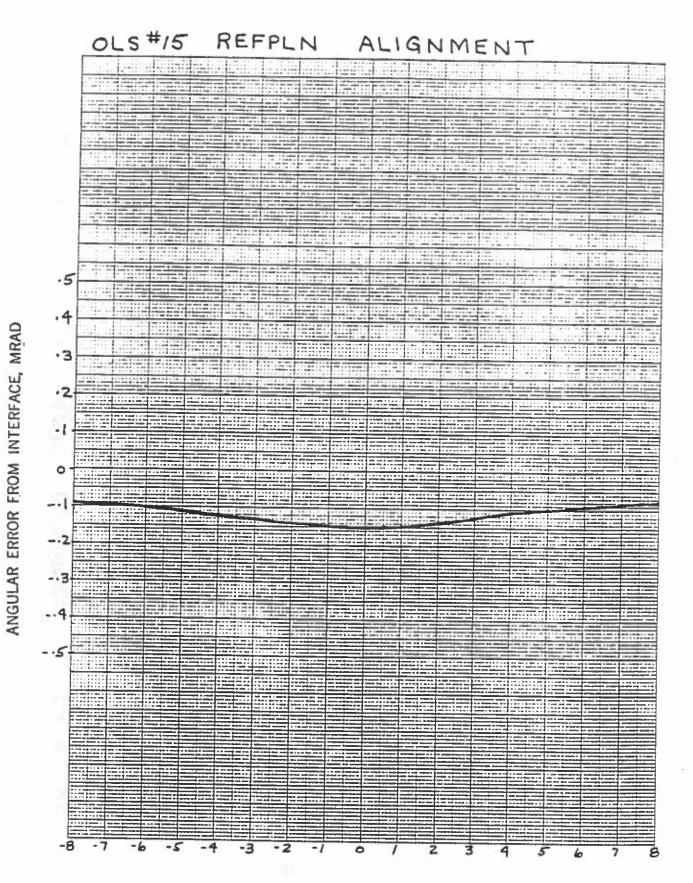
d/07828


the Interface Mounting Axes. The REFPLN Alignment and REFPLN Synchronization curves are included here. The remainder of the Alignment and Synchronization data for the OLS #15 SSS are in BVS 2416, Vol. III of this Acceptance Test Report.

The 5D-3 System has a Fallback mode utilizing an encoder control track and Encoder Simulator. The spec limits and measured results are shown in Table 2.3-2.

ATTACHMENTS: OLS #15 REFPLN ALIGNMENT OLS #15 REFPLN SYNCHRONIZATION OLS #15 ALIGN/SYNC <u>vs</u> SPEC, Table 2.3-1 OLS #15 Encoder Simulator Sync, Table 2.3-2

2-107


d/0782B

SURFACE DISTANCE, NM/100

ANGULAR ERROR FROM INTERFACE, MRAD

SURFACE DISTANCE, NM/100

Table 2.3-1

OLS #15 ALIGN/SYNC vs. SPEC all numbers in milliradians

	_HRD		PMT
<u>FIXED - Delta between "REFPLN"</u> & Optic Hot - Cold Average			
AT SPEC	0.45	0.70	0.60
Measured (worst-case)	0.45 0.27	0.32	0.60
AS STORED SPEC	0.80	0.32	1.90
Measured (worst-case)	0.80	0.34	0.90
AS DIRECT FINE SPEC	0.80	0.34	1.90
Measured (worst-case)	0.41	0.34	N/A
AS DIRECT SMOOTH SPEC	0.80	0.34	1.90
Measured (worst-case)	0.38	0.34	1.10
STABILITY - Delta Between Pre & Post	- Vibration		
AT SPEC	0.50	0.55	0.55
Measured (worst-case)	0.10	0.10	0.17
AS STORED SPEC	0.20	0.25	0.25
Measured (worst-case)	0.12	0.19	0.12
AS DIRECT FINE SPEC	0.20	0.25	0.25
Measured (worst-case)	0.12*	0.19*	N/A
AS DIRECT SMOOTH SPEC	0.20	0.25	0.25
Measured (worst-case)	0.12*	0.12*	0.10
REPEATABILITY - Delta between TV Hot AT SPEC		0.00	
Measured (rms)	0.20	0.22	0.20
AS STORED SPEC	0.02	0.06	0.03
Measured (rms)	0.30	0.30 0.23	0.30
AS DIRECT FINE SPEC	0.22	0.23	0.23
Measured (rms)	0.30	0.21*	N/A
AS DIRECT SMOOTH SPEC	2.00	2.00	2.00
Measured (rms)	0.22	0.21*	0.20
Case in the second s	0.22	0.21**	0.20
TOTAL - AT SPEC	1.00	1.30	1.20
Calculated	0.37	0.44	0.57
AS STORED SPEC	1.16	1.19	2.29
Calculated	0.58	0.64	1.16
AS DIRECT FINE SPEC	1.34	1.36	2.46
Calculated	0.64	0.62	N/A
AS DIRECT SMOOTH SPEC	2.81	2.82	3.92
Calculated	0.63	0.58	1.32
N/A = not applicable * = Inferred	from AS Stored numbe	r.	

d/07828

BVS 2414 REV -

t. ...

ALC: NAME:

Table 2.3-2

ALONG-SCAN GEOMETRIC ACCURACY WITH ENCODER SIMULATOR

	Stored	<u>Direct Fine</u>	Direct Smooth
Repeatability-Spec, mrad	1.0	1.1	2.2
Measured	0.23	0.21	0.22
Stability - Spec, mrad	0.50	0.50	0.50
Measured	0.16	0.16*	0.16*
Fixed - Spec, mrad	10.0	10.0	10.0
Measured	0.81	0.81*	0.81*
Total - Spec, mrad	11.1	11.2	12.3
Calculated	1.09	1.07	1.08
Se - Mi Sawii -			

*Inferred from stored number

2-111

d/07828

2.4 RADIOMETRIC ACCURACY

2.4.1 <u>T Channel Radiometric Accuracy</u> (3.2.1.1.4.1 a,b,c)

The <u>overall</u> one sigma accuracy of the OLS #15 T Channel dc response is 0.78°K compared to a 1.1°K spec and therefore OLS #15 does meet this specification requirement.

Table 2.4.1-1 presents the overall summary of performance, which is discussed more fully in sections 2.4.1.1, 2.4.1.2 and 2.4.1.3.

ATTACHMENTS: Table 2.4.1-1 Table 2.4.1-2 Table 2.4.1-3 Table 2.4.1-4 Table 2.4.1-5 Table 2.4.1-6 Figure 2.4.1-1 Figure 2.4.1-2 Figure 2.4.1-3 Figure 2.4.1-4 Figure 2.4.1-5 Figure 2.4.1-6 Figure 2.4.1-7 Figure 2.4.1-8 Figure 2.4.1-9 Figure 2.4.1-10 Figure 2.4.1-11 Figure 2.4.1-12

Overall Contributors 210° to 310°K Best Straight Line Calibrations T DC Response Compilation of Test Runs BSL Equation T Right, Run #10 BSL Equation T Mid, Run #10 BSL Equation T Left, Run #10 T DC Response Plots, Run #1 T DC Response Plots, Run #2 T DC Response Plots, Run #3 - Primary T DC Response Plots, Run #8 T DC Response Plots, Run #9 T DC Response Plots, Run #10_ T DC Response Plots, Run #1 T DC Response Plots, Run #2 T DC Response Plots, Run #3 – Redundant T DC Response Plots, Run #8 T DC Response Plots, Run #9 T DC Response Plots, Run #10___

d/07838

<u>OLS #15</u>

OVERALL CONTRIBUTORS TO T-CHANNEL RADIOMETRIC ACCURACY

	RMS	MAX
SPECIFICATION PARA. 3.1.4.1	DEVIATION (°K)	ONE SIGMA ERROR (°K)
a) Repeatability (<1 day)	0.265	0.35
b) Stability (>1 day)	0.61	0.80
c) Fixed Deviations	0.40	0.60
TOTAL (RSS) ACCURACY	0.78	1.10~

2-113

BVS 2414 REV -

SPECIFICATION

d/07838

ŧ.

Discussion of T DC Response Test and Overview

The measurement of T DC Response is accomplished in the thermal vacuum chamber because the T detector must be cooled to its operating temperature of near 110°K. Two controlled blackbody targets variable in temperature over the dynamic range of 190°K to 310°K provide the absolute infrared radiance reference. The temperature of each target is measured by five thermocouples which have been calibrated against a precision platinum resistance temperature standard. The five thermocouples provide target temperature gradient information to indicate target stability as well as the capability to average the five for the reference target temperature. T Channel DC Response consists of comparing the average target temperature to the channel output voltage at the input to the A/D converters for several target temperatures.

Ten vacuum runs were made on OLS #15. The T DC Response data from vacuum runs (1 through 10) is compiled in Table 2.4.1-2 and -3, which show the equipment temperature environments and characteristics of each run. The column headed "Data Points" indicates how many target temperatures were in that run. The characteristics of the response itself are indicated in three columns each for T LFT, T MID and T RGT. The compared channel response to target temperature results in a difference for each data point. This difference is corrected for M1 Temperature so that all data for a given run reflect the same M1 temperature and the expected shaper circuit difference is subtracted. In this

2-114

BVS 2414 REV -

d/0783B

form the difference data for a given run should ideally be a linear function to target temperature. A linear least- squares fit to the corrected data is used to determine the equation of the best straight line (BSL). In Table 2.4.1-2 the slope error, the 210°K ordinate and the RMS data fit values for these different BSL's are listed in the columns headed Slope, Ordinate at 210°K, and RMS Dev,

In addition to the 10 vacuum runs completed on OLS #15, a preliminary run was started, then aborted due to a system test equipment failure in the mechanical adjustment of the left T-channel pot. Data was collected for right T-channel response, after breaking vac on 4/27/88, repositioning of the tool, and entering vacuum for a second time, new data was taken for the right T-channel and no significant changes were found. Normal testing proceeded after this tool adjustment.

In order to distinguish between gain and bias type effects caused by environment, the 310°K value that results when the 210°K BSL value is forced to zero difference is also calculated. Table 2.4.1-3 shows the pre-shaper % gain Difference from Nominal, the Bias Diff. from Nominal (at 190°K) where the pre-shaper Gain is forced to nominal, and the M1 temperature coefficient (K factor); in three columns each for TRGT, TMID, and TLEFT.

Tables 2.4.1-4, -5 and -6 show the STE computer processed T DC Response Data of the final "Orbit Nominal" Run (Run #10) for TRGT, TMID, and TLEFT respectively. The fourth line down in the body of the Best Straight Line Equation, "RMS Deviation", is the RMS error (for 210°K to 310°K) of the data points fitted to the best straight line. "FP" is T Fine Primary; "FB" is T Fine, Backup (Redundant); "SP" is T Smoothed, Primary; "SB" is T Smoothed, Backup (redundant). The SP and SB are not used for T Right Only or for T Left

2-115

d/07838

Only in the Primary or Redundant normal modes; these are utilized only in the Fallback (slightly degraded) modes of operation. SP and SB are applicable to T Mid in normal Primary or Redundant modes.

Runs 2 and 3 together indicate the changes which accompany operation over the foreoptics cold-to-warm temperature range as indicated by M1 temperature.

Runs 6 and 7 together indicate the magnitude of the variation over the extremes of SSS temperature, (+11° to -3°C); when compared to the +3°C and +5°C SSS run pairs with the corresponding M1 temperatures, (Runs 3 and 2, respectively). However, changes between these runs are not only due to SSS temperature differences. The PSU, which contains the shaper networks was varied in temperature along with the SSS, from a low of -0.7°C to a high of +37.8°C.

Figures 2.4.1-1 through 2.4.1-12 inclusive show, for Runs No. 1 through No. 10, (respectively), the test data points for Targets 1 and 2 and the BSL plots for Right, Mid, and Left. (No BSL data plot was obtained for Runs 1 and 4 through 7).

The OLS #15 average M1 coefficient (coupling factor) measured for the final run (#10) was 0.175 °K at 210°K scene per 1°C temperature change of M1. The lower the M1 coefficient value, the better the performance. The T Clamp leakage was +0.126% T LEFT and +0.058% RIGHT.

The BSL differences (from Table 2.4.1-4,5 and 6) between Fine Primary and Fine Backup are 0.35K for T RIGHT, at the 310°K end. In the Smooth Primary and Backup modes, T RIGHT differs by 0.31°K (at 310°K).

The difference between T RIGHT and T LEFT segments calibration (from Tables 2.4.1.3-4 and 5) is 0.56°K worst-case, vs. a spec limit of 1.0°K.

2-116

BVS 2414 REV -

d/0783B

ù

OLS #15

210° to 310°K BEST STRAIGHT LINE CALCULATIONS

	_		-	Jo #		TEMPERATURE	U S S S S S S S S S S S S S S S S S S S		RIGHT			T HID			T LEFT		
				DATA	-		1.0		ORD.	RHS	NX II	ORD.	RMS		ORD.	RMS	COMMENTS
DATE	RUN#		<u>T</u>	TG TL POINTS	SSS M1	Ţ	PSU	SLOPE	@ 210° DEV	DEV	SLOPE	@ 210° DEV	DEV	SLOPE	@ 210° DEV	DEV	
TDCRM3A	_	4/4 33	E	9	5	ሞ	23.1	0.0039	0.29	0.13	0.0018		0.46 [0.11]	0.0078	0.10 0.19	10.19	TV Adjust
05/06/88				_		-		_	-				_		_	_	
88/60/50		Ē			<u>I</u> I						94. 1						Break Vac and
	T.				1												Vibrate
TDCRM3A 06/09/88	2	4/4	12	14	5	φ	22.9	0.0128	0.0128 -0.44 0.19	61.0	0.0086 -0.23		0. 18 	0.0154 -0.70	-0.70	0.28	Optic Limit Cold
TDCRM3B	3	4/4	6	8	3	12	23.1	0.0020	0.10	0.12	0.12 -0.0037	0.43	0.10	0.0007	0.0	0.16	Optic Limit Hot
06/09/88				-			-						_			·	
T12112318	4	4/4	6	2	Ξ	12	37.7	0.0045	-0.17	0.00	0.00 -0.0026 -0.46	-0.46	0.00	0.0021 -1.02		0.0	Hot Soak #1
06/10/88		-	-	-		-							_				
T12112318	2	4/4	13	2	<u> </u>	ዋ	-0.7	0.0108	_	0.00	0.46 0.00 0.0076	0.67	0.00	0.01461	0.21 10.001	10.00	Cold Soak #1
06/12/88			-			-	F										
T12112318	9	4/4	6	2	Π	12	37.8	0.00501-0.85		0.00	10.001-0.00171-0.51		0.0	0.00371-1.24		10,01	Hot Soak #2
06/13/88		-		=		-											
T12112318	1	4/4	12	2		φ	-0.4	0.0172 -0.49		00.01	0.01471-0.34		0.00	0.02011-0.72	k	00.00	Cold Soak #2
06/15/88		=	_		-	-											
TDCRM38	8	4/4	6	9	5	12	32.7	0.0038	-0.26	0.14	0.0038 -0.26 [0.14]-0.0011 -0.04 [0.13]	-0.04	0.13	0.00491-0.55	-0.55	10.231	Hot Limit
06/18/88		-		=			_										
TDCRM3B	6	4/4	12	7	e	ማ	3.5	0.0159	0.0159 -0.39	0.24	0.01361-0.31		0.25	0.01961-0.78		0.32	Cold Limit
06/22/88		-															
TDCRM3C	01	4/4	12	18	2	۳	22.7	0.0143 -0.63		0.23	0.0124 -0.57		0.251	0.01881-1.04		0.29	Orbit Nominal
07/01/88		-	_	-	-	_											
	_		—		-	-	-										
	•	•		•	•		•			•						•	

. /

OLS #15

T DC RESPONSE COMPILATION OF TEST RUNS

		-														
				_			Z GAIN BIAS	BIAS		L GAIN BIAS	BIAS		1 GAIN BIAS	BIAS		
<u> </u>	_	*	 		-	Ē	DIFF.	DIFF.		DIFF.	DIFF. DIFF.		DIFF.	DIFF.		L COMMENTS
		₫	DATA			-	FROM	FROM	×	FROM	FROM	×	FROM	FROM	×	
	ITG	TL POINT	. vol	I M SSS	-	PSU	NOM.	NOM.	FACTOR	NOM.	_	FACTOR	NOM.		FACTOR	
	1 4/4 13	13	9	5	ማ	23.1	0.87	0.95	0.95 0.166	0.71	1 1.10 0.178	1.178	1.26	0.89	0.176	I TV Adiust
05/06/88		-		۲	-	-					-					Break Vac
05/09/88		7	- 7				80									Vibrate
TDCRM3A 2	4/4	12	14	5	-8 22.9	2.9	1.48	0.1710.169	0.169	1.06	0.25 0.170	0/1	1.61	141 0-	0 187	Dotic limit Cold
06/09/88					-										1	
TDCRM38 3 306/09/88 3	4/4	6	8		12 23.1	3.1	65.0	0.36	0.36 0.169	-0.14	0.56 0.170	0.170	0.19	0.23	0.187	Optic Limit Hot
T12112318 4	4/4	6	2	Ξ	12 37.7		-0.17	-1.400.169	1	-0.83	1-1.2310.170	1001.0	-0.68	16.1-1	0. 187	Hot Soak #1
06/10/88			-		-				_							
T12112318 5	4/4 13	13	2	<u>m</u>	-8 -0.7		2.06	1.63	1.63 0.169	1.78	1.810.170	. 170	2.37	1.42	0.187	Cold Soak #1
06/12/88	-	-	-	-	-	-					-					
1)2112318 6	4/4	6	2	Π	12 37.8	_	80.0-	-1.32 0.169	1	-0.76	-1.26 0.170		-0.66	-2.28	0.187	Hot Soak #2
06/13/88			_					_								
T12112318 7	4/4 12	12	2	<u>6</u>	-8 -0.4		2.08	0.21 0.169	0.169	1.86	0.34 0.170	1.170	2.30	2.30 -0.02	0.187	Cold Soak #2
06/15/88		-	-	-	-							1	144			
TDCRM3B 8	4/4	6	9	S	12 32.7	-	0.31 -	-0.21 0.169	1000	-0.20	1-0.1810.170	1.170	0.12	-0.74	0.187	Hot Limit
06/18/88			-	-												
TDCRM38 9	4/4 12	12	1	3	φ	3.5	1.99	0.46 0.169	0.169	1.72	0.4310.170	.170	2.16	2.16 1-0.01	0.187	Cold Limit
06/22/08		_		-	_	_					_					
TDCRM3C 10	4/4 12	12	18	5	-8 22.7		1.52 -	<u> -0.1010.169</u>	0.169	1.30	1-0.1310.170	170	1.78	-0.57	0.187	Orbit Nominal
07/01/88					-	-			,	1	-					
		-		-	-			-								
		-	-		-	-										

REV -

福かれてい

Sec. 1

F

Annual Annual

F

BVS 2414

d/07788

111 BURGER

OLS NUMBER 15 T RGT DATA OF 06/29/88 SSS AT 5C M1 AT -8C PSU TEMP = 22.7 M1 Coefficient = .169 K/C T GAIN = 4 T LEVEL = 12 V2 (T Clamp V) = 2.11263 K9 (TL Step Size) = .925332

BEST STRAIGHT LINE EQUATION

	FP	FB	SP	SB
BSL SLOPE	0.0143	0.0131	0.0146	0.0131
BSL AT 190K(K)	-0.91	-1.13 🗧	-0.90	-1.08
BSL AT 210K(K)	-0.63	-0.86	-0.61	-0.82
BSL AT 310K(K)	0.80	0.45	0.85	0.50
RMS DEVIATION(K)	0.23	0.19	0.26	0.19
BSL AT 310K;				
190 AT OV(K)	1.10	0.80	1.15	0.84
% CHANGE FROM		а <u>г</u>		
NOM GAIN	1.52	1.11	1.58	1.16
BIAS DIFF FROM				
NORMAL 190K(K)	-0.10	-0.67	-0.04 =	-0.57

2-119

d/0783B

n ganno i i m

OLS NUMBER 15

T MID DATA OF 06/29/88

```
SSS AT 5C
M1 AT -8C
PSU TEMP = 22.7
M1 Coefficient = .170 K/C
T GAIN = 0
T LEVEL = 12
V2 (T Clamp V) = 2.11697
K9 (TL Step Size) = .925332
```

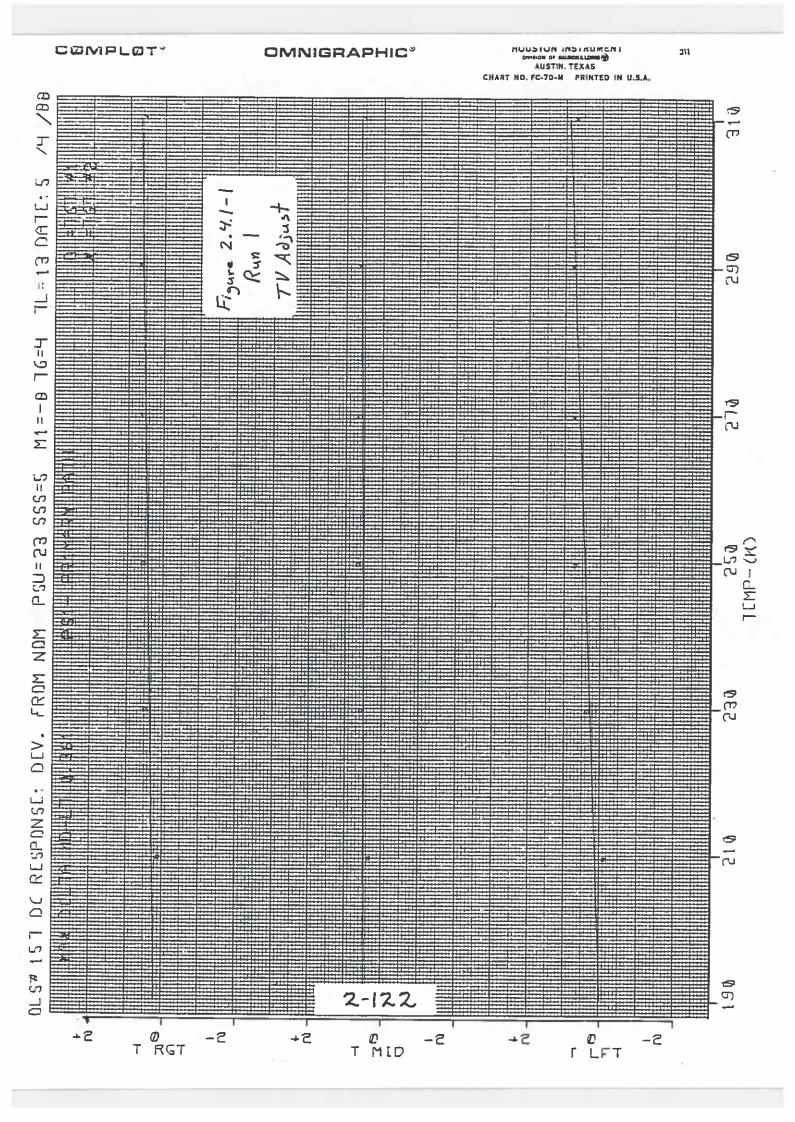
BEST STRAIGHT LINE EQUATION

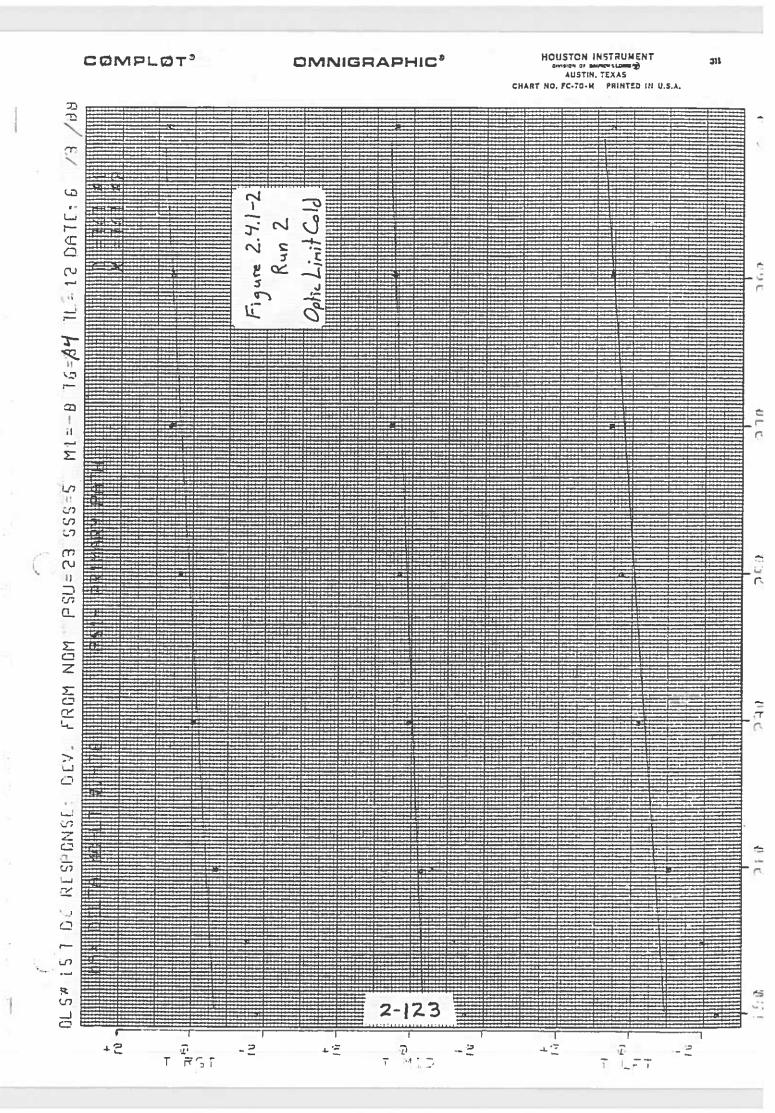
	FP	FB	SP	S 8
BSL SLOPE -	0.0124	0.0130	0.0124	0.0131
BSL AT 190K(K)	-0.82	-0.97 =	-0.74	-0.91
BSL AT 210K(K)	-0.57	-0.71	-0.49	-0.64
8SL AT 310K(K)	0.68	0.59	0.75	0.67
RMS DEVIATION(K)	0.25	0.24	0.24	0.26
BSL AT 310K;				
190 AT OV(K)	0.94	0.90	0.99	0.96
% CHANGE FROM				
NOM GAIN	1.30	1.25	1.37	1.33
BIAS DIFF FROM				
NORMAL 190K(K)	-0.13	-0.36	0.02	-0.23

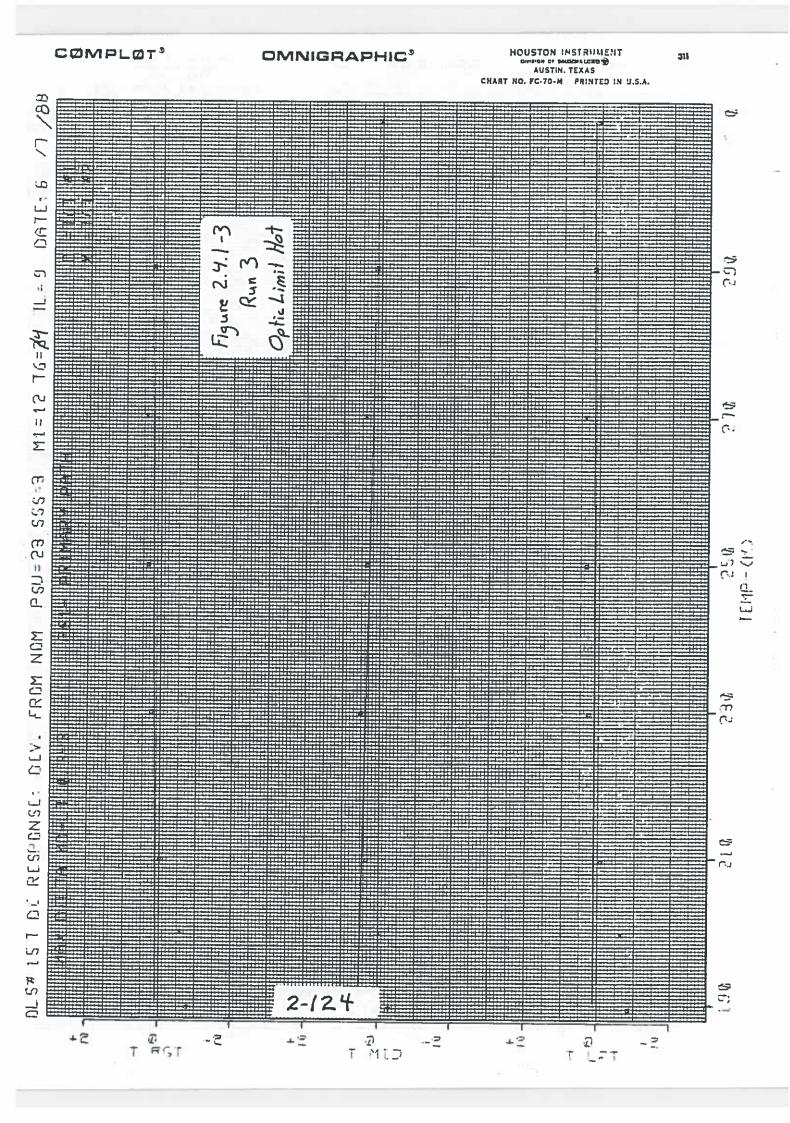
2-120

d/07838

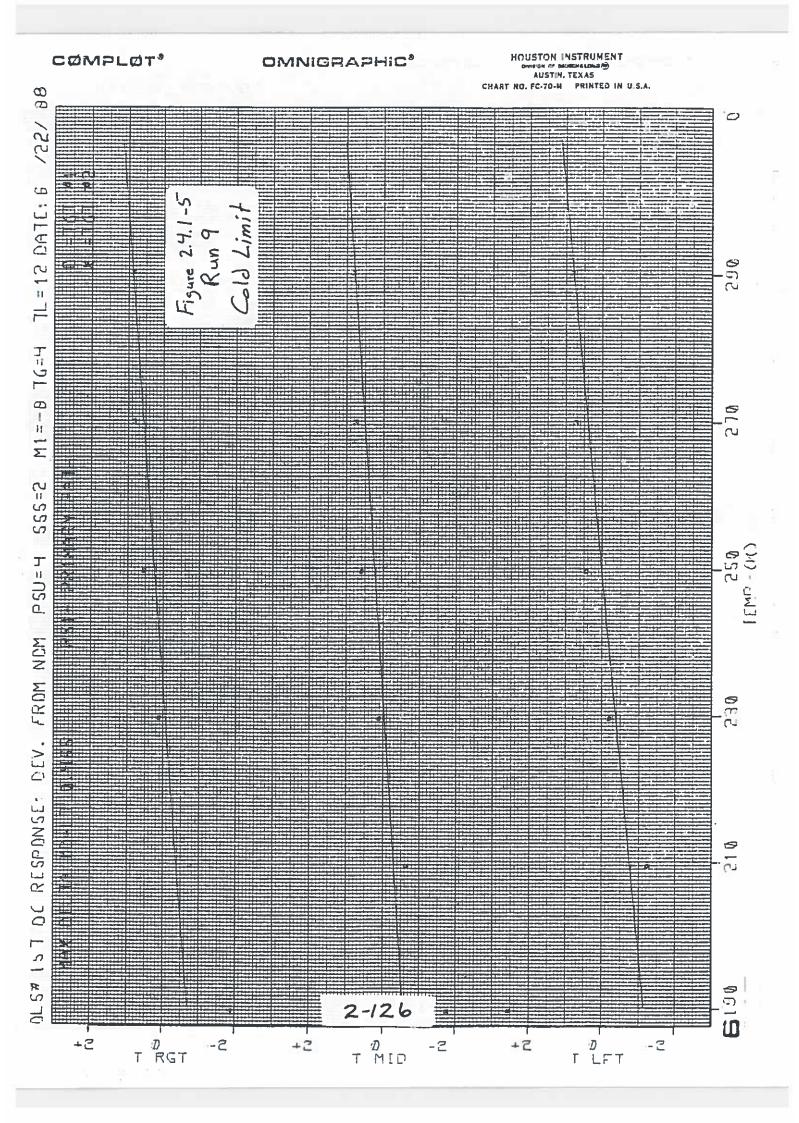
OLS NUMBER 15

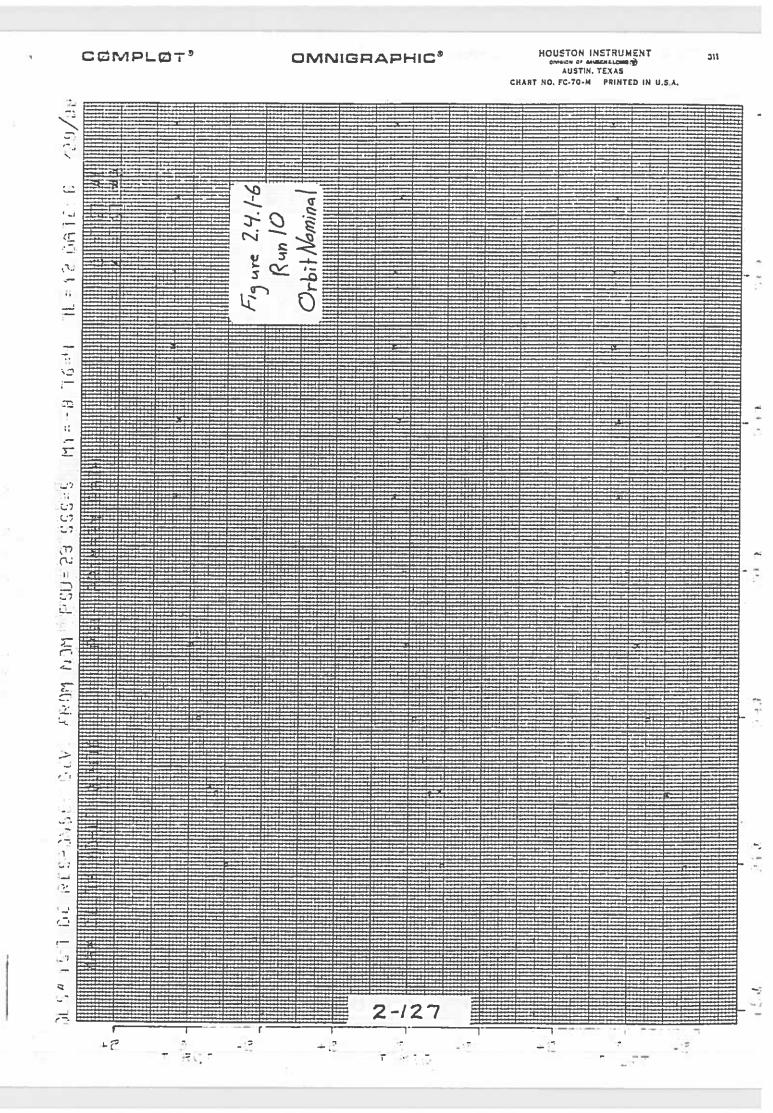

T LFT DATA OF 06/29/88 SSS AT 5C M1 AT -8C PSU TEMP = 22.6 M1 Coefficient = .187 K/C T GAIN = 4 T LEVEL = 12 V2 (T Clamp V) = 2.11914 K9 (TL Step Size) = .925332

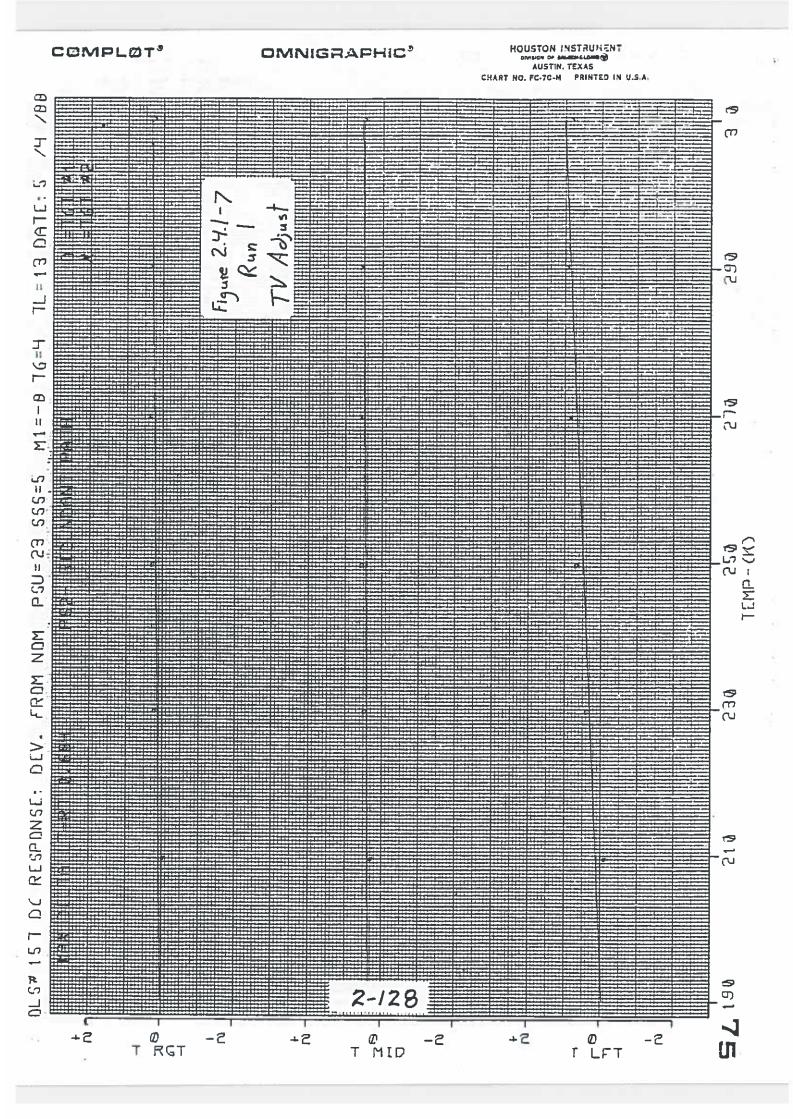

BEST STRAIGHT LINE EQUATION

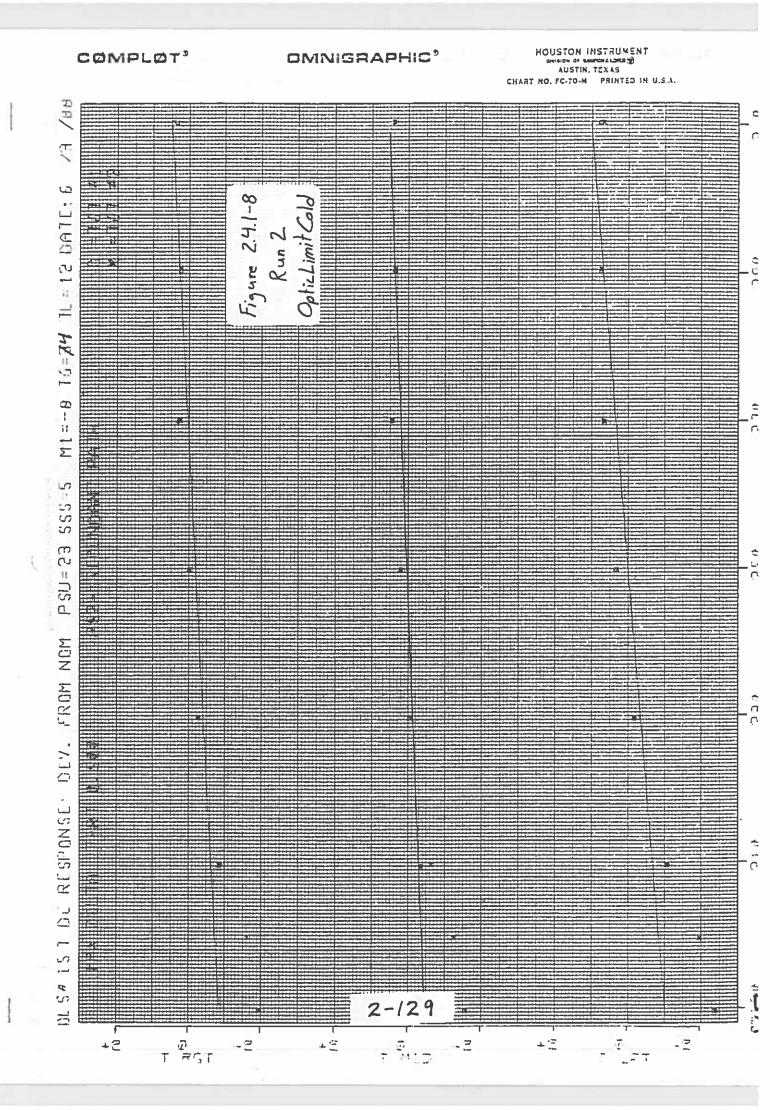

	FP	FB	SP	SB
BSL SLOPE	0.0188	0.0204	0.0189	0.0204
BSL AT 190K(K)	-1.42	-1.45	-1.39	-1.41
BSL AT 210K(K)	-1.04	-1.04	-1.01	-1.00
BSL AT 310K(K)	0.83	1.00	0.88	1.04
RMS DEVIATION(K)	0.29	0.29	0.30	0.29
BSL AT 310K;				
190 AT OV(K)	1.29	1.47	1.33	1.50
% CHANGE FROM				
NOM GAIN	1.78	2.03	1.83	2.07
BIAS DIFF FROM				
NORMAL 190K(K)	-0.57	-0.43	-0.49	-0.34

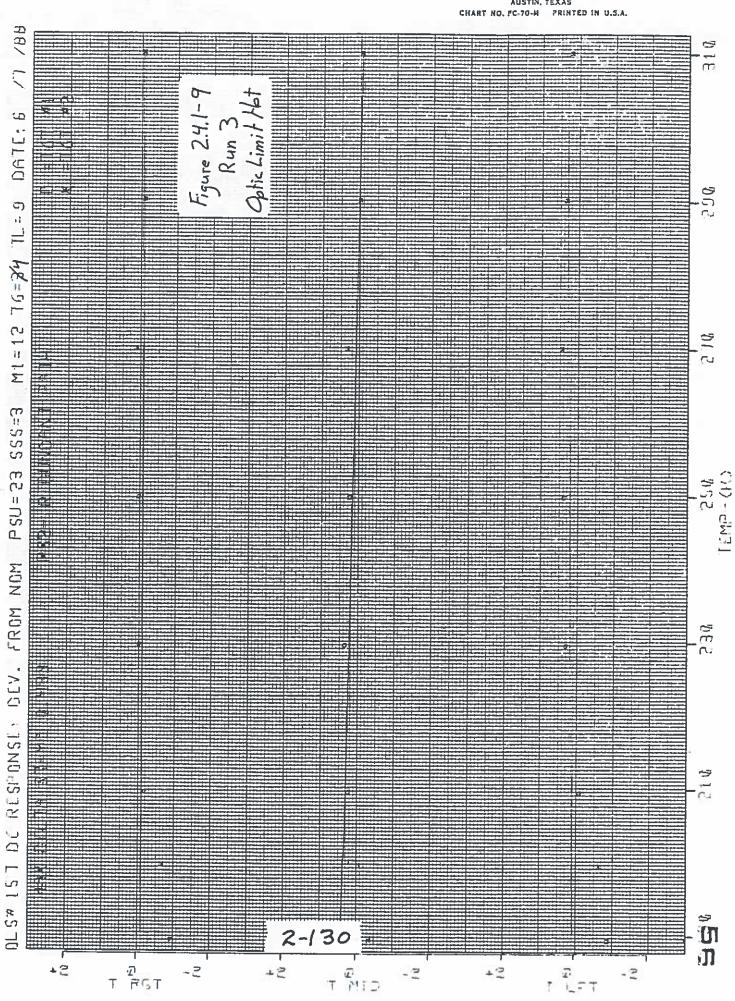

2-121

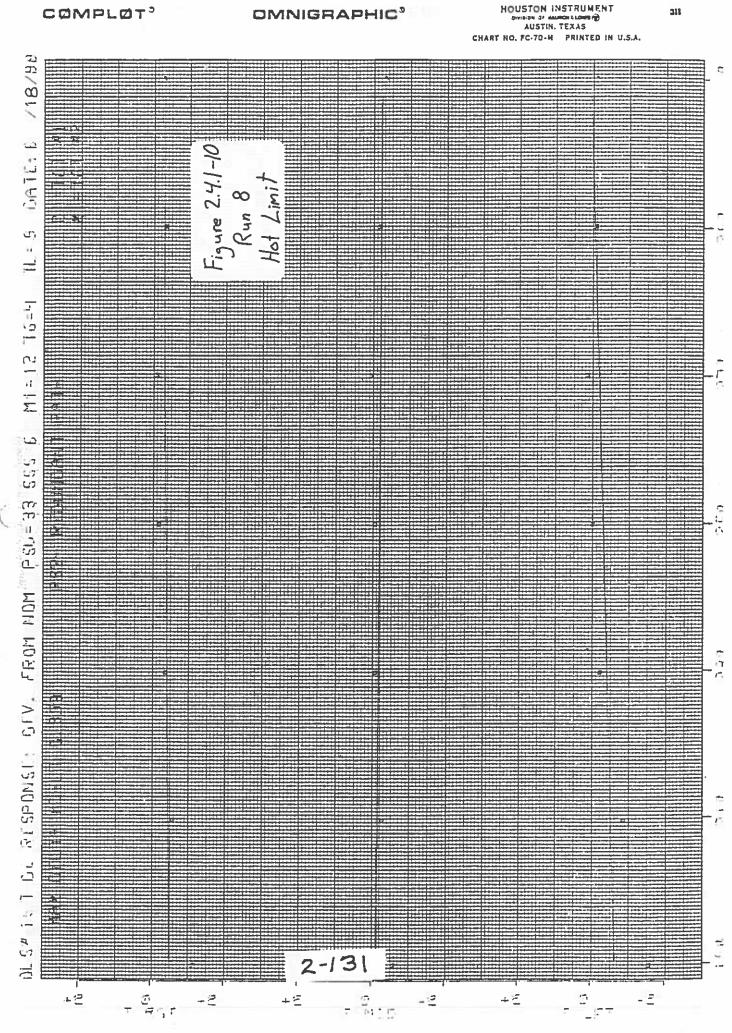

d/0783B

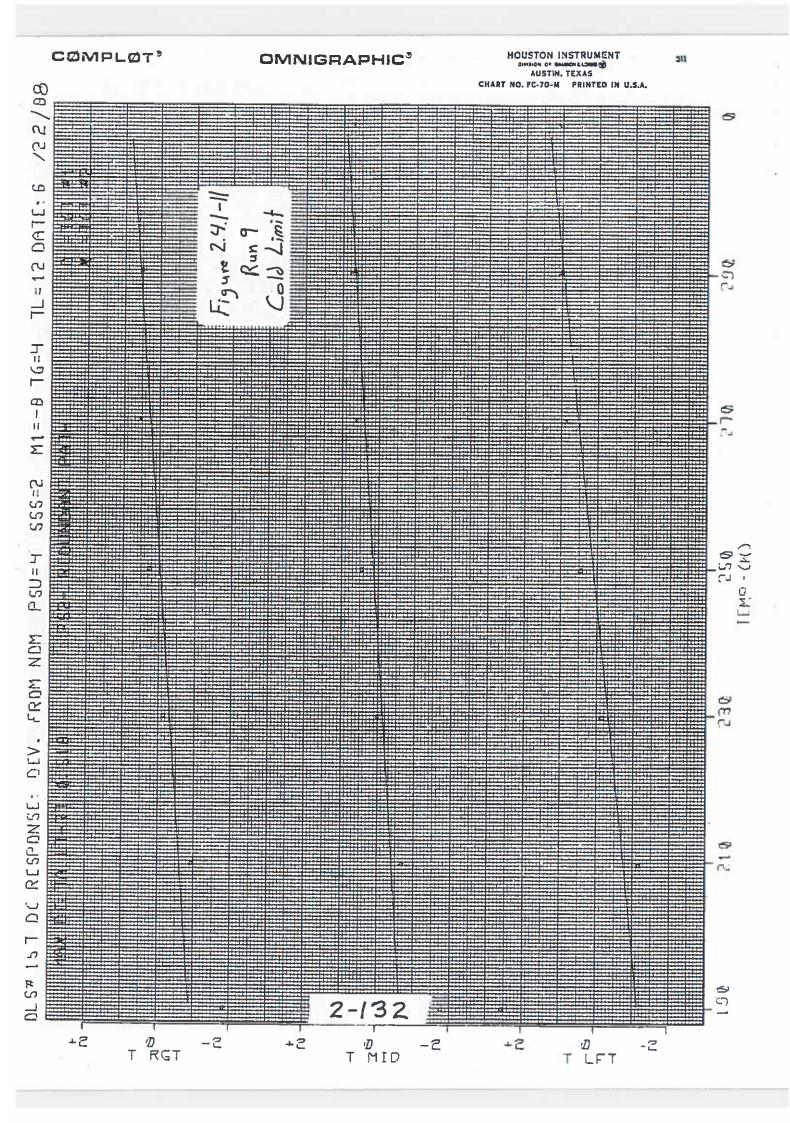






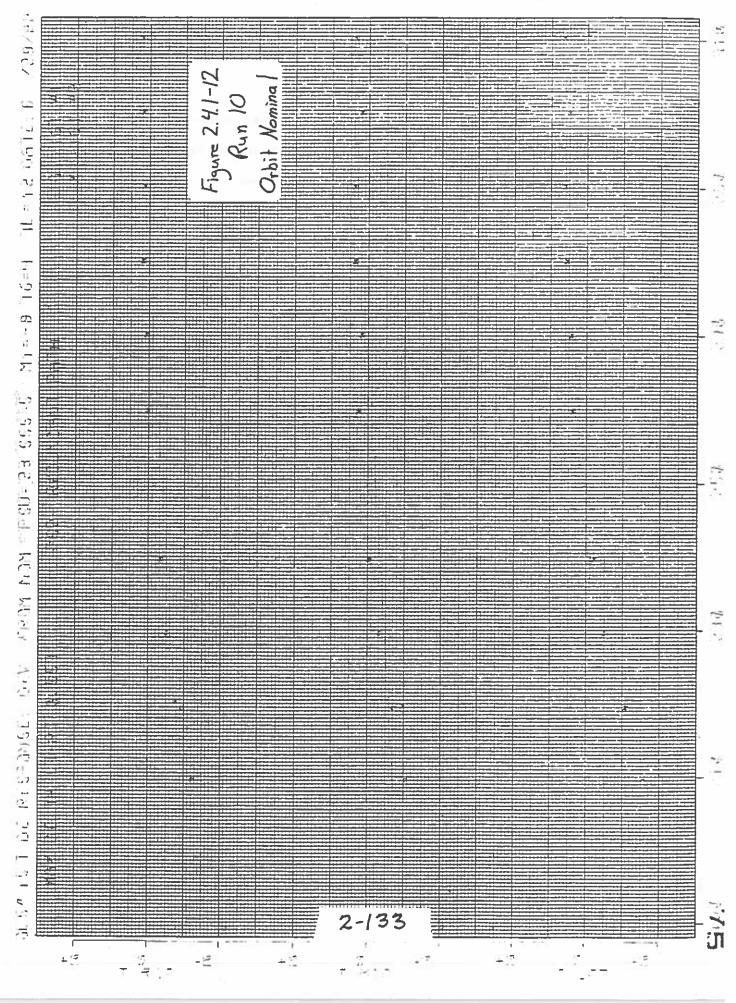





OMNIGRAPHIC[®]

CØMPLØT*

HOUSTON INSTRUMENT OWNERS OF AMAGENELISME () AUSTIN, TEXAS HART NO. FC-70-N 2RINTED IN U.S



CØMPLOT'

OMNIGRAPHIC

HOUSTON INSTRUMENT DIVISION OF ZAMICIALIMETED AUSTIN, TEXAS CHART NO, FC-70-M PRINTED IN U.S.A.

2.4 RADIOMETRIC ACCURACY

2.4.1 <u>T Channel Radiometric Accuracy</u> (Cont'd)

2.4.1.1 Repeatability (3.2.1.1.4.1a)

The 1 sigma Repeatability of T Channel DC Response is 0.265°K compared to a 0.35°K one sigma specification maximum and therefore OLS #15 does meet this specification requirement.

ATTACHMENTS

Table 2.4.1.1-1 Repeatability Contributors Table 2.4.1.1-2 Gain and Bias Variations with Temperature Change Table-2.4.1.1-3 Target Crosstalk, T Clmp Leakage Data

d/0783B

2-134

TABLE 2.4.1.1-1

OLS #15

REPEATABILITY CONTRIBUTORS SUMMARY

<u>Err</u>	OR SOURCE	ONE SIGMA ERROR (K°)
1.	Diurnal M1 Temperature Change (4°C)	
	A. Quantization of T Level Command	0.17
	B. Inability to Compensate Actual Effect Exactly	0.057*
2.	- Temperature Change PSU <u>+</u> 4.5°C, SSS <u>+</u> 1°C	
	A. Effect due to Gain Change	0.059*
	B. Effect due to Bias Change	0.130*
3.	T Clamp Shaper Compensation	0.08
4.	T Clamp Leakage	0.107*
	TOTAL RSS REPEATABILITY ERROR (°K)	0.265
	SPECIFICATION LIMIT, °K, ONE SIGMA	0.35 MAXIMUM

*FROM TEST DATA (REDUCED)

d/07838

4

2-135

Discussion of Repeatability Calculations

1. Dinurnal Ml Temperature Change

A. The effects of MI temperature (more properly the foreoptics temperature) are a Repeatability error source. The foreoptics thermal time constant is short enough to permit significant diurnal temperature variations. The ability to compensate for foreoptics temperature using the T Level command greatly reduces this error but does not eliminate it. Although calculations enabling ground compensation smaller than the quantization of the T Level command are possible, it is herein assumed that they will not generally be made. Therefore an error is ascribed due to the T Level quantization as follows:

0.294°K RMS T Level Cmd. Quantization Error at 210°K (1.02° x 1/ 12) x 0.564 RMS Temperature Linearity Effects over 210-310°K dynamic range = 0.17°K RMS error

8. The fact that foreoptics temperature effect cannot be accurately predicted by the single monitor of M1 temperature means that in times of sharp transition the ability to compensate is impaired. It has been assumed that this error may be represented by a 1°C lag in M1 temperature during the 1/3 of the orbit that sharp transistions occur. Therefore the inability to compensate the actual effect is ascribed the following error:

1°C Lag in M1 Temperature
x 1/√3 RMS Over total orbit
x 0.175 T Left, T Mid, T RGT average sensitivity coefficient of
video at 210K to M1 temperature change for OLS #15 (K factor)
x 0.564 Temperature Linearity Effects over dynamic range.
= 0.057°K RMS error

2-136

d/07838

Discussion of Repeatability Calculations

Total T channel gain change with temperature may be broken down into two components as follows:

Total Gain $\Delta = [(PSU \ \Delta T) \ x \ P_G] + [SSS \ \Delta T) \ x \ S_G]$ where: $P_G = PSU$ coefficient of gain, % per °C. $S_G = SSS$ coefficient of gain, % per °C.

Similarly for bias changes with temperature:

Total Bias $\Delta = [(PSU \ \Delta T) \ x \ P_B] + [(SSS \ \Delta T) \ x \ S_B]$ where: $P_B = PSU \ coefficient \ of \ bias, \ ^K \ per \ ^C.$ $S_B = SSS \ coefficient \ of \ bias, \ ^K \ per \ ^C.$

Data from two pairs of runs designated A and B, were used to solve these equations simultaneously:

Solved simultaneously for the temperature sensitivity factors, these equations can be reduced to the following:

$$S_{G} = (T_{PA})(G_{B}) - (T_{PB})(G_{A})$$

$$T_{PA}(T_{SB}) - (T_{PB})(T_{SA})$$

$$P_{G} = G_{A} - (T_{SA})(S_{G})$$

$$T_{PA}$$

$$S_{B} = (T_{PA})(B_{B}) - (T_{PB})(B_{A})$$

$$T_{PA}(T_{SB}) - (T_{PB})(T_{SA})$$

$$P_{B} = B_{A} - (T_{SA})(S_{B})$$

$$T_{PA}$$

d/0783B

1998 B. C. C.

2-137

2. SSS and PSU Temperature Change: Effect On Gain Change

The effects of SSS and PSU temperature change on gains were determined from parametric analysis of the four runs in Table 2.4.1.1-2. Solving simultaneous equations yielded sensitivity coefficients of gain change for both SSS and PSU temperature change. Temperature data from 5D-2 systems currently on-orbit indicates that the worst case SSS temperature variations are 1°C while worst case PSU temperature variations are 4.5°C. This is a change from the calculations used in previous systems. Previous calculations assumed a maximum temperature change of 1°C for both SSS and PSU. Using the worst-case factors yields:

S_G = -.033% Gain change per degree SSS change x 1°C temperature change → .31°K RMS over 210K to 310K range x 1/√3 for uniform temperature distribution = -.006 deg/deg

P_G = -.046% Gain change per degree PSU change x 4.5° temperature change x .31°K RMS over 210K to 310K range x 1/√ 3 for uniform temperature distribution = -.037 deg

RSS'ing these two contributors yields 0.059 deg total.

3. SSS and PSU Temperature Change, Effect On Bias Change

From Table 2.4.1.1-2:

- SB = -0.10 deg Bias change per degree SSS change
 x 1° temperature change
 x 0.564 RMS Temperature Linearization Effects, 210K to 310K
 x 1/√3 for uniform temperature distribution
 = -.033 deg/deg
- PB = -.073 deg Bias change per degree PSU change x 4.5° temperature change x 0.564 RMS Temperature Linearization Effects, 210K to 310K x 1/ 1/3 for uniform temperature distribution = -.107 deg

RSS'ing these two contributors yields 0.130 deg/deg total.

2-138

BVS 2414

REV -

d/07838

4. T Clamp Shaper Compensation

The SSS temperature changes throughout each orbit are expected to a cause a one sigma error of 0.146°K at 210K due to the compensation for T clamp temperature variation from 228K to 253K. This times the 0.564 RMS Temperature Linearitation Effect over the dynamic range equals 0.08°K RMS error.

5. T Clamp Leakage

An ASV effect may be caused by some of the scene radiance being viewed at the time of T clamp during the overscan period getting into the reference T Clamp value. This can happen if the T detector sensitivity extends slightly beyond the boundaries of M4' during the clamp time. The test performed for leakage is to view one target at 210°K while the other target (which is at the T Clamp angle) is varied over the 210° to 310°K dynamic range. This data is presented in Table 2.4.1.1-3. The effect on the active scan first target is attributed to the T clamp optical leakage.

Using the OLS #15 T data from Table 2.4.1.1-3, the T clamp leakage contribution can be calculated as follows:

T clamp leakage ratio (LR) = 100% x $\Delta T = \frac{\Delta T}{\Delta P}$ = $\Delta T \times .50552\%$

This calculation is now performed to more decimal places in the MODE 4 data reduction of T121T221S. The ratio calculated is:

.126% T LEFT .058% T RIGHT

2-139

d/0783B

The peak error from T clamp leakage (due to the 310° background) can be calculated as follows:

peak error = LR x
$$\Delta N$$
 x $\left(\frac{\partial P^{-1}}{\Delta T_{210}}\right)^{-1}$
= ΔT x $\frac{\Delta N}{\Delta P}$ x $\frac{\frac{\partial P}{\Delta T}}{\frac{\partial P}{\Delta T_{210}}}$
= ΔT x 0.8156 x 1.0788
= ΔT x 0.880

where:

ΔP = Difference in radiance between 210° and 310°K $= 16.742 \text{ E}-4 \text{ w cm}^{-2} \text{ sr}^{-1} @ 310^{\circ}\text{K}$ - 2.3468E-4 w cm⁻² sr⁻¹ @ 210°K $= 14.395E-4 \text{ w cm}^{-2} \text{ sr}^{-1}$ and: $\Delta N = Difference$ in radiance between 240° and 310°K $= 16.742 \text{ E}-4 \text{ w cm}^{-2} \text{ sr}^{-1} @ 310^{\circ}\text{K}$ - 5.001 E-4 w cm⁻² sr⁻¹ @ 240°K 11.741 E-4 w cm⁻² sr⁻¹ aP. = slope of radiance curve at 210°K = 6.7452 E-6 ΔT210 9b = slope of radiance curve at 214°K = 7.277 E-6 ΔT214 AT = measured change in response to 210° target as the background is varied from 210° to 310°K. RMS ERROR = PEAK ERROR x 0.7605 for RMS distribution of leakage radiance over dynamic range. x 0.564 RMS Temperature Linearization Effect FROM MODE 4 Data reduction: Calculated RMS leakage error = .107°K T LEFT = 049°K T RIGHT The worst-case contribution to repeatability error by T-clamp leakage is

therefore 0.107°K RMS.

2-140

d/0783B

TABLE 2.4.1.1-2

OLS #15

GAIN AND BIAS VARIATIONS WITH TEMPERATURE CHANGE (M) TEMP CORRECTED TO +12°C or -8°C)

	_			т —	T RGT	L	T MID	T	LFT
				COLUMN CAIN	BIAS CHG.	T GAIN	BIAS CHG.	A GAIN	BIAS CHG.
			nch -	l UELIA			1 40 130 K		
	-	ENP		2		(1)		2	(K)
		11.8	32.0	1.1	-1.67	0.77	-1.67	1.1	-2.48
M) = -8°C (RUN A) (RUN A)		5.07	21.3	1.38	-0.76-	1.16	-0.8	1.52	-1.49
		6.73 (T _{SA})	10.7 (T _{PA})	-0.28 (G _A)	10.91 (B _A)	-0.39 (G _A)	-0.87 -0.87 (_A)	-0.42 (G _A)	-0.99 (_A)
		12.06	31.5	0.33	-1.22	-0.31	-1.N	-0.15	-2.0
M) = +12°C (Mu a)	0.5			2	0 C	30 0	v 33		8
			2	Pr		5.0	cy.n-	16.0	<u>60</u> , <u>7</u> , <u>1</u>
fax +ga		в.06 Т _{5В}	10.5 T _{PB}	-0.23 6 ₈	-0.92 B ^B	-0.36 G _B	-0.88	-0.46 68	B ^B
		\$55:	5 _G (#/°C)	0.0308	9010	0.0156		*-0.0329	
Factors		PSU:	P _G (1/°C)	-0.0455	*-0.0734	*-0.0463	-0.0700	-0.0186	-0.0327

* WORST CASE VALUES

2-14)

TABLE 2.4.1.1-3

OLS #15

TARGET CROSSTALK, T CLAMP LEAKAGE DATA*

 $SSS = +5^{\circ}$ $M1 = -8^{\circ}$

	T RIGHT	T MID	T CPL	T CPR	T LEFT	
T1 210° [T2 @ 310°] (TDCRM3A)	+0.12	+0.54	-0.05**	+0.07**	-0.23	 06-06-88
Difference, ∆T	+0.06	-0.14	+0.25	+0.11	+0.15	
T1 210° [T2 @ 210°] (T121T221S)	+0.18	+0.40	+0.20	+0.18	-0.08	06-06-88
T2 210° [T1 @ 310°] (T131T221A)	+0.10	+0.26			-0.21	06-05-88
Difference, ∆T	+0.10	+0.07	- j - * *	5	+0.10	
T2 210° [T1 @ 210°] (T121T221S)	+0.20	+0.33			-0.11	06-06-88
From T121T221S Mode 4 Data Reduction:		в		an a		
T clamp leakage Peak leakage er RMS leakage err	ror at 210°	YKis Sis	.126% .219°К .107°К	.058% .101°K .049°K		

*Data is FP Deviation in °K **Clamp Leakage Data from 6/03/88 run of T121T231G.ST

d/0783B

2-142

2.4 Radiometric Accuracy

2.4.1 <u>T Channel Radiometric Accuracy</u> (Cont'd)

2.4.1.2 <u>Stability</u> (3.2.1.1.4.1b)

The T Channel Radiometric Accuracy (Stability) analysis in the OLS 5D-3 System Summary Report Paragraph 3.5.1.2, predicts 0.61°K 1 sigma error in stability compared to the 0.8°K maximum specification requirement. This calculation is applicable to all 5D-3 systems with 190-310°K total range.

ATTACHMENTS

Table 2.4.1.2-1 Stability Contributors Summary Table 2.4.1.2-2 Change in BSL 201°, 310°K Points Between Runs Table 2.4.1.2-3 Change in 210°, 310° Dutput Deviation From Nominal (°K) between Power Supply 1 and Power Supply 2

2 - 143

TABLE 2.4.1.2-1

STABILITY CONTRIBUTORS SUMMARY

				ONE SIGMA <u>ERROR (°K)</u>
1.	Shaped Bias			
	a) Open Loop Mirror Em	issivity	0.1	
ı	b) T Clamp Shaper Comp	ensation - Temperature	0.23	
-		- Age	<u>0.17</u>	
	RSS Total		0.30°K	
	X RMS Temperature = RMS Shaped Bias	Linearization Effect Errors	0.564	0.17°K
2.	<u>Bias</u>	· m/ 11		
	a) Preshaper Gain	- Inner Stage Temperature	0.28	
		- Bias Current	0.24	
		- Amplifiers	0.22	
	b) Post Shaper DC Drift	:	0.12	
	RSS Total = RMS Bias	Error		0.45°K
3.	<u>Gain</u>			
	Postshaper Gain Changes	- Amplifier		
	over the 210-310K range,	°K RMS Error		<u>0.38</u>
	TOTAL RSS Stability Erro	r (Total Dynamic Range)		0.61
	Stability Error Specific	ation (°K, 1 Sigma)		0.80 Maximum

d/0783B

BVS 2414 REV -

ONE STONA

When the state and a first second second

Discussion of Stability Errors

The experimentally derived RMS change of the BSL(s) between runs was calculated to be 0.05°K, 0.04°k and 0.16°K for TRGT, TMID and TLEFT respectively. The two runs used were Run #4 and run #6. The results verify the analytical estimate of the stability over time intervals greater than one day. This data is tabulated in Table 2.4.1.2-2.

As an additional check of stability, the Fine-Primary outputs of the three segments as a deviation from nominal (°K) at 210° and 310° were compared using power supply 1 data of TDCRM3C.ST and power supply 2 data of 6X2X3A.ST. (Both from Run #10). This data is tabulated in Table 2.4.1.2-3. The deltas were calculated and RMS'd over the temperature range. The results are comparable to the "Change Between Runs" data.

2 - 145

d/07838

TABLE 2.4.1.2-2

OLS #15

CHANGE IN BSL 210, 310K POINTS BETWEEN RUNS

SSS = +11°C, M1 = +12°C

	_				_			
	TG		<u> </u>	RGT	Т	4ID DIP	<u> T (</u>	LFT
- 6	R/L	ΤL	210	310	210	310 _	210	310
T121T231B	4/4	9	-0.87	-0.42	-0.46	-0.72	-1.02	-0.81
T121T2318 6-13-88	4/4	9	-0.86	-0.35	-0.51	-0.69	-1.24	-0.87
 Change Between Runs	2		0.01	0.07	0.06	0.03	0.22	0.06
RMS Change			0.05	°K	0.04	°K	0.10	5°K

d/0783B

ţ.

TABLE 2.4.1.2-3

0LS #15

T CHANNEL DC RESPONSE

DIFFERENCE BETWEEN POWER SUPPLIES 1 and 2

From Orbit Nominal (Run #10), SSS = $+5^{\circ}C$, M1 = $-8^{\circ}C$

	•	R1(GHT	M.	[D	LEI	FT	
	2000 C 120	TGT-1	TGT-2	TGT-1	TGT-2	TGT-1	TGT-2	
÷		<u>210°K</u>	310°K	210°	<u>310°</u>	<u>210°</u>	<u>310°</u>	
Í	Power Supply 1 TDCRM3C.ST FP DEV [K] 07/01/88	-1.08	+0.50	-0.96	+0.43	-1.62	+0.47	
ĺ	Power Supply 2 6X2X3A.ST T121T231P 06/28/88	-1.07	+0.54	-0.95	+0.46	-1.57	+0.53	
	Change ^e K	0.01	0.04	0.01	0.03	0.05	0.06	
	RMS °K	• 0.0	0.03		.02	0.06		

d/07838

2-147

2.4 RADIOMETRIC ACCURACY

2.4.1 <u>T Channel Radiometric Accuracy</u> (Cont'd)

2.4.1.3 Fixed Deviations (3.2.1.1.4.1c)

The Fixed deviations for OLS #15 are 0.40°K, 1 sigma, compared to the 0.6°K specification maximum. The calibrateable portion of the fixed deviations is 0.33°K RMS compared to the 0.4°K RMS specification maximum. The Fixed deviation calibration for separate detector segments is 0.56°K (worst case) compared to the 1°K spec. maximum. The maximum along scan variation was 0.114°K RMS for TF (Right) and 0.118°K RMS for TS compared to the 0.2°K RMS specification maximum.

ATTACHMENTS

Table 2.4.1.3~1	Fixed Deviations Contributors
Table 2.4.1.3-2	T Shaper Error Tabulation
Table 2.4.1.3-3	Target Deviation from Mean of Both Targets
Table 2.4.1.3-4	BSL Calibration Equations
Table 2.4.1.3-5	Fixed Deviation Calibration Differences for Separate Segments
Table 2.4.1.3-6	Along Scan Variation (265° to 310°K) within a Segment
Table 2.4.1.3-7	Cone (Inner Stage) Patch Temp EST
Table 2.4.1.3-8	Cone Cooler Outer Stage Temp EST
Figure 2.4.1.3-1	502 Nominal Shaper Curve
Figure 2.4.1.3-2	Along Scan Variation, T Right, M1 = 12°C
Figure 2.4.1.3-3	Along Scan Variation, T Mid, M1 = 12°C
Figure 2.4.1.3-4	Along Scan Variation, T Left, M1 = 12°C
Figure 2.4.1.3-5	Along Scan Variation, T Right, Ml = -8°C
Figure 2.4.1.3-6	Along Scan Variation, T MID, M1 = -8°C
Figure 2.4.1.3-7	Along Scan Variation, T Left, Ml = -8°C
Figure 2.4.1.3-8	Along Scan Variation, T Auto Ml = 12°C
Figure 2.4.1.3-9	Along Scan Variation, T Auto M1 = -8° C

d/0783B

2-148

TABLE 2.4.1.3-1

OLS #15

FIXED DEVIATION_CONTRIBUTORS

			ONE SIGMA	
DEV	TATION SOURCE		ERROR (°K)	
1.	Foreoptics Mirror Emissivity		0.10*	
2.	T Clamp Shaper Compensation		0.09	
3.	Transfer Function II a non man Tow of the second			
	A. Non-Linearity		0.33* 0.4°K	Spec Max
	B. Shaper Components Variation		0.10	
	C. Detector Spectrum Variation (included in 3A)		-	
4.	Test Targets			
	A. Temperature		0.10	
	B. Emissivity		0.10	
	C. Repeatability		0.02*	
TOT	AL (RSS) FIXED DEVIATION		0.40	
FIX	D DEV. SPECIFICATION LIMIT, °K ONE SIGMA		0.60 Maximum	
* FI	ROM TEST DATA ANALYSIS			
5.	Fixed Deviation BSL Calibrations Match for Separate Segments (Worst Case)	<u>DATA</u> 0.56	SPEC MAX 1.°K	
6.	Along Scan Varations within a segment (265° to 310°K) Worst Case	0.11°K RMS	0.2°K RMS	

2-149

d/0783B

4

The strength

-

Discussion of Fixed Deviation Tests and Calculations

1. Foreoptics Mirror Emissivity

The foreoptics mirror emissivity is a source of Fixed deviations as well as of Repeatability and Stability deviations. The correction in operation is made on M1 temperature only; whereas the entire foreoptics causes the offset phenomena. The ground calibration is made in the thermal vacuum chamber, where M1 is cooled radiatively via a cold tunnel, which fills the M1 view beyond the optical field of view of the system. Thus the foreoptics temperature distribution in the chamber differs somewhat from operation in space, especially in that M2 is colder in the chamber. It is not possible to determine accurately this effect based upon present knowledge. It is therefore assumed that it is equivalent to a 1°C difference in M1 temperature, or about 0.175°K at 210° using the actual OLS #15 M1 coefficient (K factor). The RMS Temperature Linearization Effect, 0.564, transforms this to a 0.10°K RMS contribution to fixed deviation.

2. T Clamp Shaper Compensation

The T Clamp shaper compensation contribution arises as follows. If the T Clamp emissivity were initially only 0.98 rather than the 0.995 used to calculate the compensation for T Clamp temperature, the error at 242°K would be 0.70°K. Although this error would be compensated for when the T channel adjustments were made, a change in T Clamp temperature to 256°K or 230°K would result in an error of 0.78°K, producing an uncompensated error of 0.08°K. Over the dynamic range this is equivalent to 0.09°K RMS.

d/07838

2-150

3. Transfer Function

A. The departure of the T channel radiometric transfer function from a linear relationship is not an error as such because it it known and may be compensated for. However, this type of deviation is included within the constraints of the Fixed deviation portion of the T channel radiometric accuracy spec. The nominal T Channel non-linear transfer function (shaper) error is tabulated in Table 2.4.1.3-2 and plotted in Figure 2.4.1.3-1. The nominal shaper error is 0.13°K RMS. This calculation is made with the 5D-3 shaper, which is also used on OLS #15. The worst-case reduced test data (from Tables 2.4.1-4,5 & 6) RMS Deviations of the points from the BSL for OLS #15, are 0.26°K for T Right (Smooth Primary), 0.26°K for T MID (Smooth Backup) and 0.30°K for T Left (Smooth Primary). The analytic value, (0.13°K RMS) and the worst-case test value of 0.30°K are RSS'ed to become 0.33°K RMS for this Fixed deviation source versus the 0.4°K maximum spec allowance for the calibrateable portion of the Fixed deviations.

B. Departure of shaper components from design nominal values may cause additional peak errors of 0.25°K and are assigned a one sigma error of 0.1°K. These deviations would not be included in the measured deviation, because the data points are not close enough together to adequately detect them.

C. The T detector spectrum difference from unit to unit is included in the calibration data and is therefore included in 3A, the non-linearity of transfer function.

2-151

4. Test Targets

The deviation of the reference test target indicated blackbody temperature from absolute is the result of contributions from three Fixed deviation sources.

A. The measurement of the averaged target temperature using the 5 thermocouples immersed in the target baseplate is subject to the accuracy of the PQL/Block V Thermocouple Aquisition and Control System calibrated per procedure MCSO116801B. A review of the calibration procedure and the equipment used has led to ascribing 0.1°K RMS to these sources.

B. The actual effective blackbody temperature of the target also deviates from that measured because of differing emissivity from that assumed and because the "true" radient temperature differs from the measured temperature using the thermocouples. The effective emissivity is a combination of true emissivity (which is better than 0.996 according to Eppley) and reflectance of up to 0.004. An average emissivity of 0.998 is corrected for along with the thermocouple calibration. This source of deviation has been assigned 0.1°K RMS.

C. Actual measurements with OLS #15 system of the two Eppley IR Reference test targets over the 210° to 310°K range reveal small differences between the targets. These differences, as tabulated in Table 2.4.1.3-3, represent the target differences from the mean of both targets for T LFT and T RGT averaged from file TDCRM3C.ST (Run #10). The eleven differences when RMS'ed yield 0.02°K RMS deviation for this source.

2-152

Fixed Deviation Calibrations for Separate Segments

The calibrations are represented by the best straight line (BSL) equations for the separate segments. The BSL deviation expressions (from . ideal), in y = mx + b form for the segments are tabulated in Table 2.4.1.3-4. In T Smooth the Right and Left detector segments are averaged and used across the entire scan line.

In order to determine the differences in calibrations for separate segments, (for comparison to the specification) the T Fine BSL deviation equations of Table 2.4.1.3-4 were evaluated at 210°K and 310°K. The 3 possible segment differences were then calculated. Also, the worst-case deviations between segments were taken from the Best Straight Line Plots (Figures 2.4.1-1 thru 2.4.1-12). These results are tabulated in Table 2.4.1.3-5. The calibration differences for separate segments are within the 1°K maximum spec throughout the dynamic range of 210 to 310K for OLS #15.

Along Scan Variation (265°K to 310°K) Within a Segment

The Along Scan Variation (ASV) in T DC Response is considered to be a Fixed deviation, since as a function of scan angle it does not vary as a function of time per se. Figures 2.4.1.3-2, 3, 4, 5, 6, 7, 8 and 9 show the deviations along-scan vs. surface distance (nmi/100) for T RGT, T MID, TLFT, and T AUTO. The vertical scale factor is 1.0° K per cm. Four figures are for M1 = -8°c and four are for M1 = +12°C. The computer printed number to the

2-153

d/0783B

right of each curve is the computed RMS deviation is millidegrees K for the associated ASV plot. the RMS ASV values are only printed for the target temperatures above 265°K, i.e., the 270°, 290°, and 310°K plots.

The T DC response BSL calibrations are taken using test scan angles of -50° (-600nmi) for T LFT, +50° (+600nmi) for T RGT, and +0° (0 nmi) for T MID.

The OLS #15 has a slight amount of ASV, but is within spec. The worst case (max) ASV RMS value within a segment for OLS #15 was 0.11°K and is entered in Table 2.4.1.3-6 to compare with the specification limit.

2-154

d/0783B

1

BVS 2414 REV -

en l'un element als manier alleres eller l'eller de l'allere de l'une de l'eller de la manuel de l'eller de l'e

TABLE 2.4.1.3-2

T SHAPER ERROR LIST

The 190 to 310°K T Shaper has 6 straight line segments of decreasing slope and 5 (inflections) diode break points.

(°K)	<u>error</u> (°K)	REMARKS
190	0	End point adjusted to be an Ideal Curve
195 201.5	-0.38	lst slope is parallel to Radiance (Smooth) Curve
205 210	+0.26 0	lst diode cut-in
215 220.5	-0.18 0	2nd slope is parallel to Radiance (Smooth) Curve
224 228.5	+0.20 0	2nd diode cut-in
235 240.5	-0.20	3rd slope is parallel to Radiance Curve
245 251.5	+0.19 0	3rd diode cut-in
257 263	-0.21 0	4th slope is parallel to Radiance Curve
267 272	+0.165 0	4th diode cut-in
279 284.5	-0.195	5th slope is parallel to Radiance Curve
291 296	+0.16 0	5th diode cut—in
303 310	-0.13 +0.023	6th slope is parallel to Radiance Curve

The largest plus and minus errors in the $210K-310^{\circ}K$ range are $+0.20^{\circ}$ and $-0.21^{\circ}K$ respectively.

The standard deviation = 0.13°K RMS over the 210° to 310°K dynamic range.

2-155

BVS 2414 REV -

d/07838

TABLE 2.4.1.3-3

OLS #15

TARGET DEVIATION FROM MEAN OF BOTH TARGETS

TARGET TEMP (°K)	DEVIATION (°K)
210	.01
220	.04
230	02
240	.00
250	.02
260	.03
270	01
280	.01
290	.02
300	04
310	.00

RMS = $\frac{\Sigma(\text{Dev. }^{\circ}K)^2}{11} = 0.023^{\circ}K$

2-156

BVS 2414 REV -

to alter side

d/0783B

THE STREET AND

TABLE 2.4.1.3-4 OLS #15

BSL CALIBRATION EQUATIONS

(From Tables 2.4.1-4,5,6)

T FINE (Primary	() —			EVAL @ 210°	UATED <u>@ 310°</u>
T-Right:	Error = 0.0143	(T-190) - 0.91	(°K)	-0.63	+0.80
T-Mid:	Error = 0.0124	(T-190) - 0.82	(°K)	-0.57	+0.68
T-Left:	Error = 0.0188	(T-190) - 1.42	(°K)	-1.04	+0.83

T FINE (Redundant)

T-Right:	Error = 0.0146 (T-190) - 0.90	(°K)	-0.86	+0.45
T-Mid:	Error = 0.0130 (T-190) - 0.97	(°K)	-0.71	+0.59
T-Left:	Error = 0.0204 (T-190) - 1.45	(°K)	-1.04	+1.00

Error = 0.0124 (T-190) - 0.74 (°K)T SMOOTH (Primary - SP MID)

T SMOOTH Error = 0.0131 (T-190) - 0.91 (°K)(Redundant - SB MID)

2-157

phenage factor and a second

d/07838

19.

TABLE 2.4.1.3-5

OLS #15

FIXED DEVIATION CALIBRATION DIFFERENCES FOR SEPARATE SEGMENTS

Calculated from Run #10 8SL's in Table 2.4.1.3-4:

	DIFFERENCE AT_210°K_(°K)	DIFFERENCE <u>AT_310k (°K)</u>	SPECIFICATION (MAX)
PRIMARY			
T Mid to T Right	0.06	0.12	1°K
T Mid to T Left	0.47	0.15	۱°K
T Right to T Left	0.41	0.03	1°K
REDUNDANT			
T Mid to T Right	0.15	0.14	1°K
T Mid to T Left	0.33	0.41	1°K
T Right to T Left	0.18	* 0.55	۱°ĸ

Worst Case Differences from Best Straight Line Plots (Figures 2.4.1-1 thru 2.4.1-12):

<u>RUN #</u>	PRIMARY PATH	REDUNDANT PATH	SPEC. MAX.
2	0.48° MID-LFT	0.50° LFT-RGT	1°K
3	0.34° MID-LFT	* 0.44° RGT-MID	3°K
8	* 0.50° MID-LFT	0.39° MID-LFT	1°K
9	0.47° MID-LFT	0.52° LFT-RGT	1°K
10	0.48° MID-LFT	* 0.56° LFT-RGT	1°K

*WORST-CASE DATA

2-158

d/07838

TABLE 2.4.1.3-6

OLS #15

ALONG SCAN VARIATION (265°K TO 310°K) WITHIN A SEGMENT

(From ASV Graphs)

<u>T-FINE</u>	ONE SIGMA ERROR (°K RMS)	SPEC. LIMIT (°K RMS)
T-Left Segment	0.114	0.2
T-Mid (Sum) Segment	0.095	0.2
T-Right Segment	0.096	0.2
<u>T-SMOOTH</u>		
T-Sum	0.118	0.2

2-159

d/07838

1.10.44

TABLE 2.4.1.3-7

CONE COOLER S/N 027

0LS-15

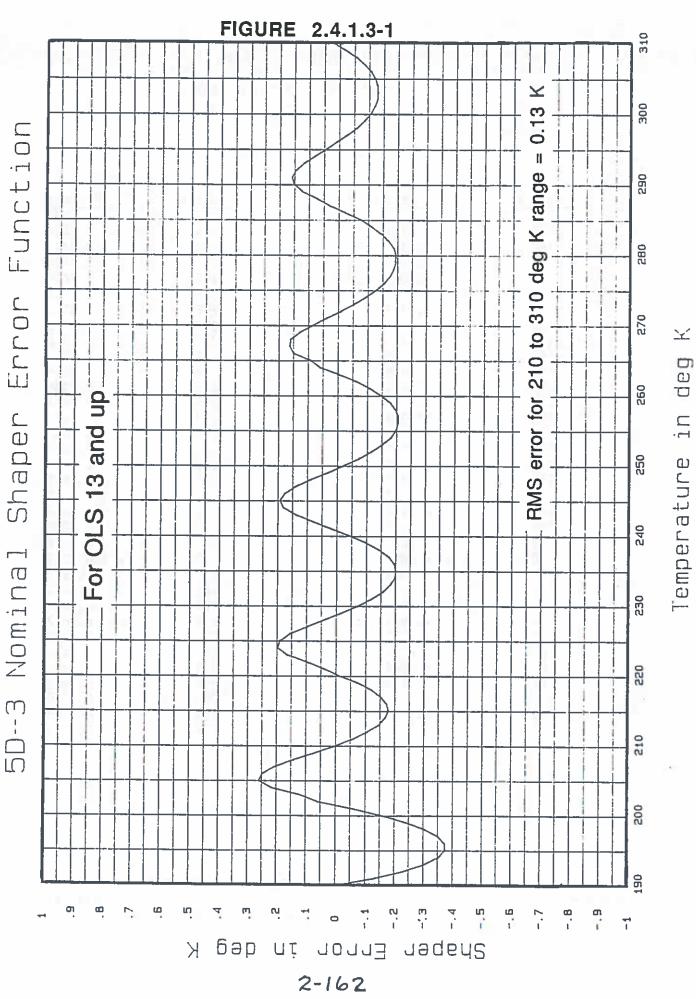
CONE (INNER STAGE) PATCH TEMP. EST

TEMPERATURE °K	PATCH EST, VOLTS
95	5.789
96	5.373
97	4.991
98	4.638
99	4.313
100	4.014
101	3.737
102	3.482
103	3.247
104	3.030
105	2.829
106	2.644
107	2.472
108	2.314
109 110	2.167
	2.031
111 112	1.905 1.788
113	1.700
113	1.578
115	1.485
115	1.398
117	1.350
118	1.241
119	1.171
120	1.105
121	1.044
122	0.987
123	0.934
124	0.884
125	0.838

2-160

d/0783B

TABLE 2.4.1.3-8


CONE COOLER OUTER STAGE TEMP EST

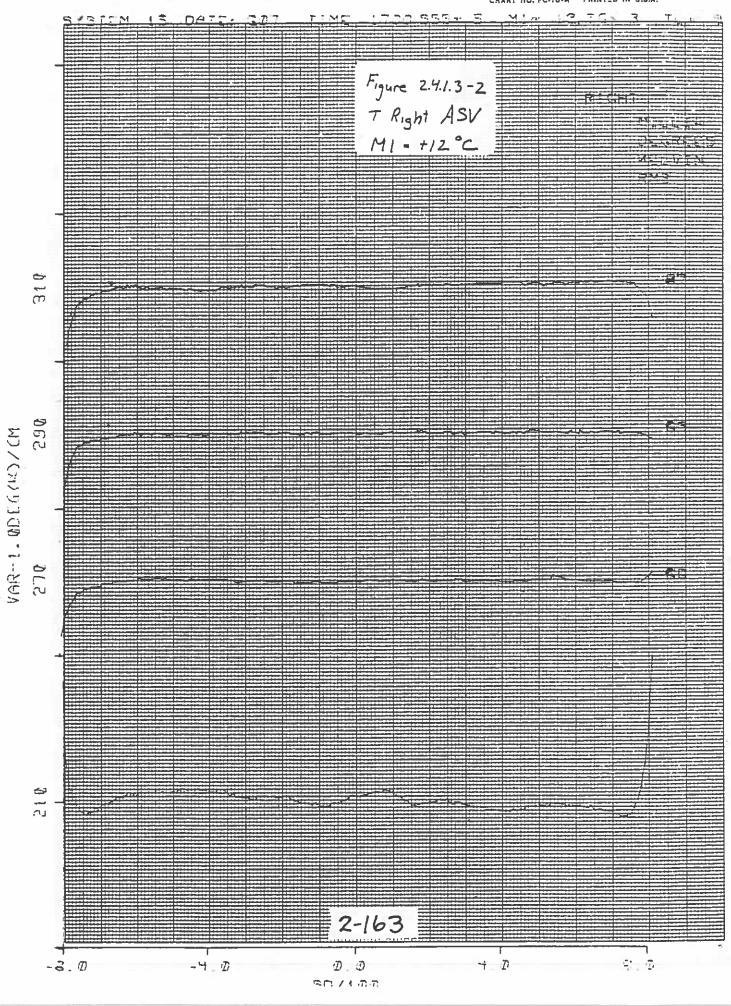
OLS #15

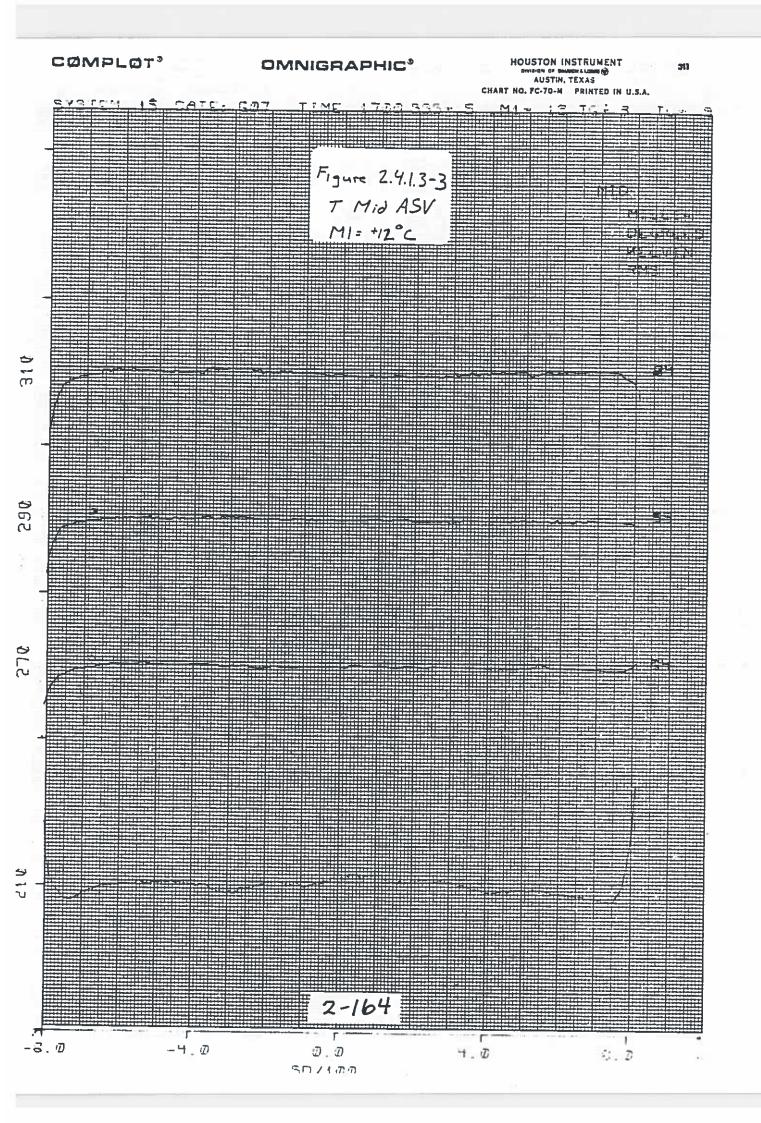
T CONE TEMP EST (EST #33)

T (DEG K)	EST VOLTS		T (DEG K)	EST VOLTS
158	4.8221		194	4.1282
159	4.8181		196	4.0328
160	4.8136		198	3.93
161	4.8088		200	3.8195
162	4.8035		202	3.7016
163	4.7978		204	3.5769
164	4.7915		206	3.4468
165	4.7848		208	3.3115
166	4.7775		210	3.1719
167	4.7695		212	3.0292
168	4.7609		214	2.8844
169	4.7515		216	2.7386
170	4.7414		218	2.5924
171	4.7306		220	2.4475
172	4.7188		222	2.305
173	4.7063		224	2.1659
174	[©] 4.6926		226	2.0302
175	4.678		228	1.8995
176	4.6622		230	1.7735
177	4.6454	5	235	1.4832
178	4.6273		240	1.2308
179	4.608		245	1.0159
180	4.5874		250	0.8359
181	4.5654		255	0.6873
182	4.5418		260	0.5650
183	4.517		265	0.4653
184	4.4904		270	0.3842
185	4.4622		275	0.3182
186	4.4323		280	0.2646
187	4.4008		285	0.2207
188	4.3673		290	0.1852
189	4.3322		295	0.1560
 190	4.2951		300	0.1320
192	4.2156		305	0.1123

d/0783B

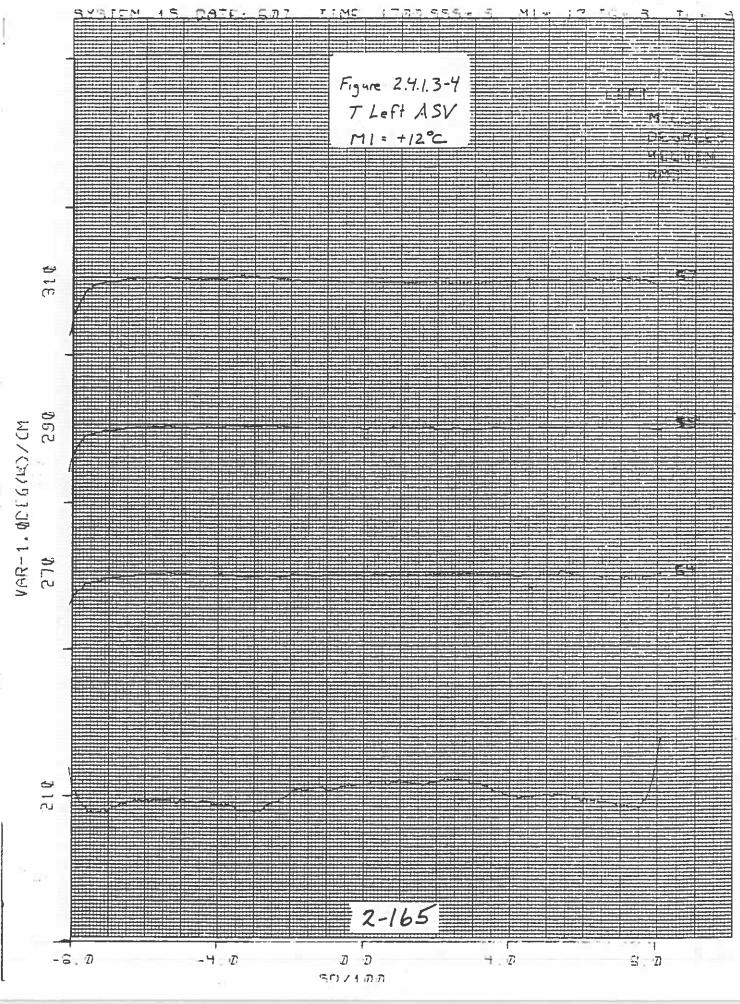
A - CL - CLARP COMMAND

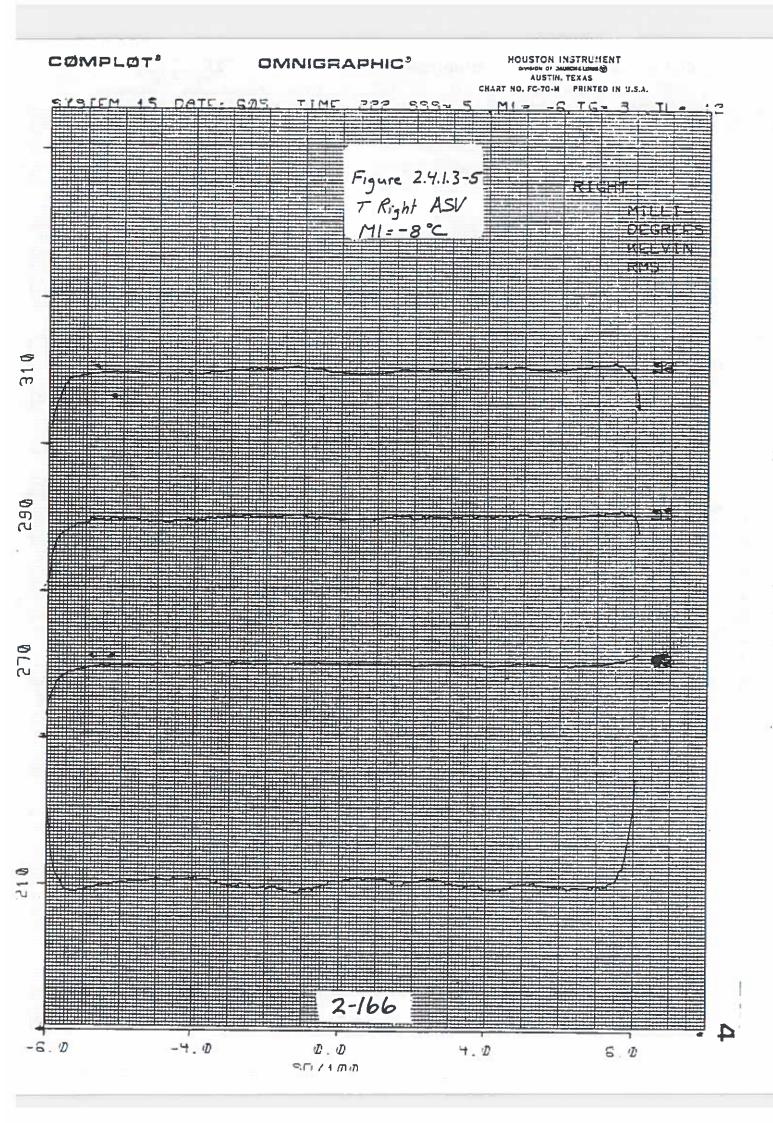


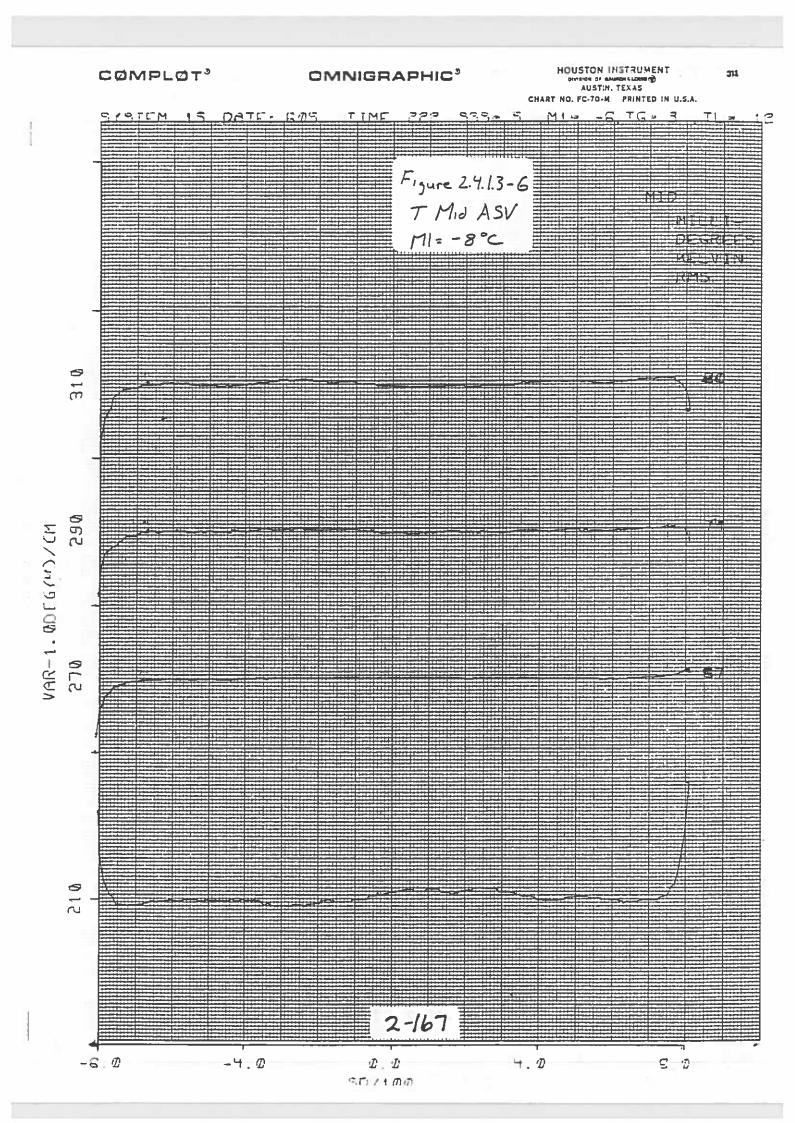


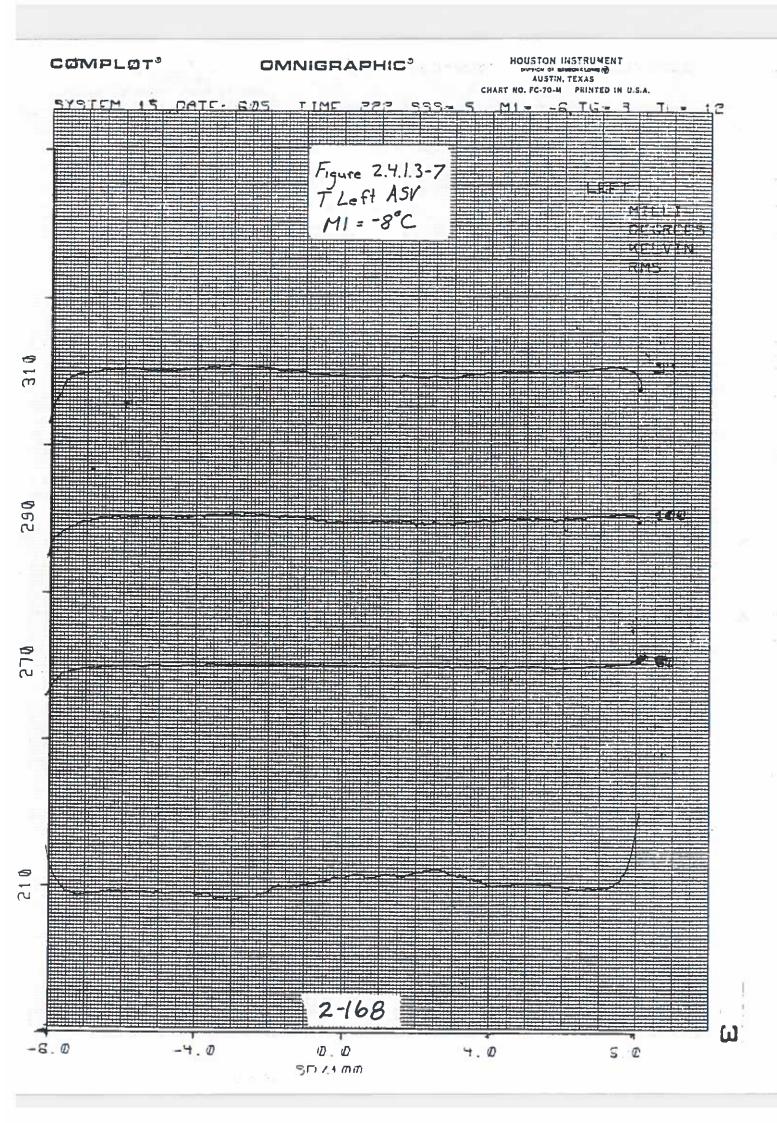
DMNIGRAPHIC[®] AUSTIN TEXAS CHART NO. FG-70-M PRINTED IN U.S.A.

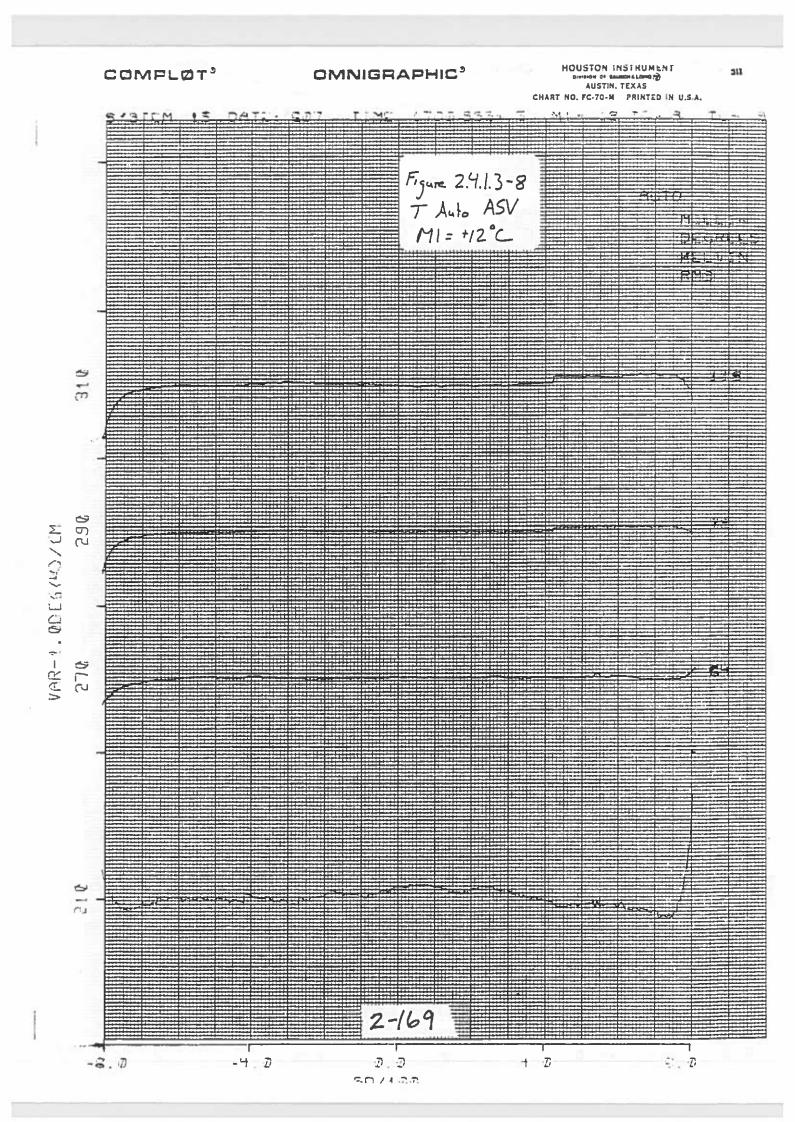
₽ 红

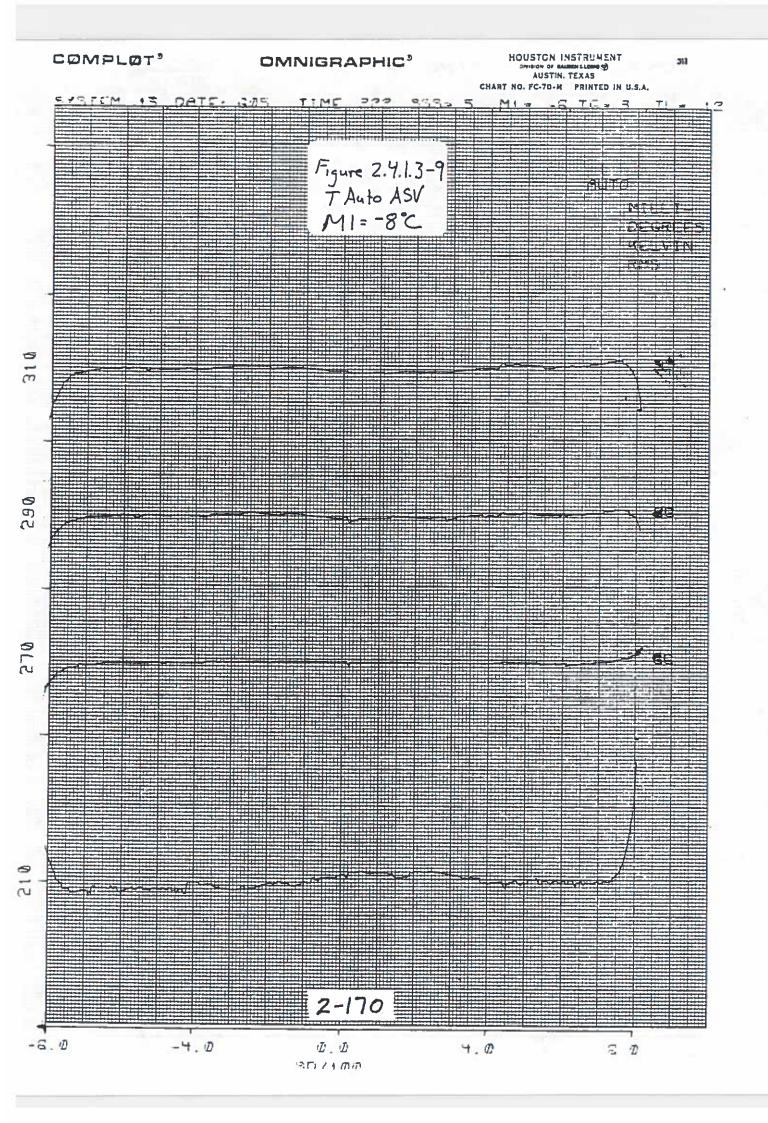





OMNIGRAPHIC" -


HQUSTON INSTRUMENT Division of Jamen Close & Austin, Texas Chart No. FC-70-M PRINTED IN U.S.A.


> 1 1

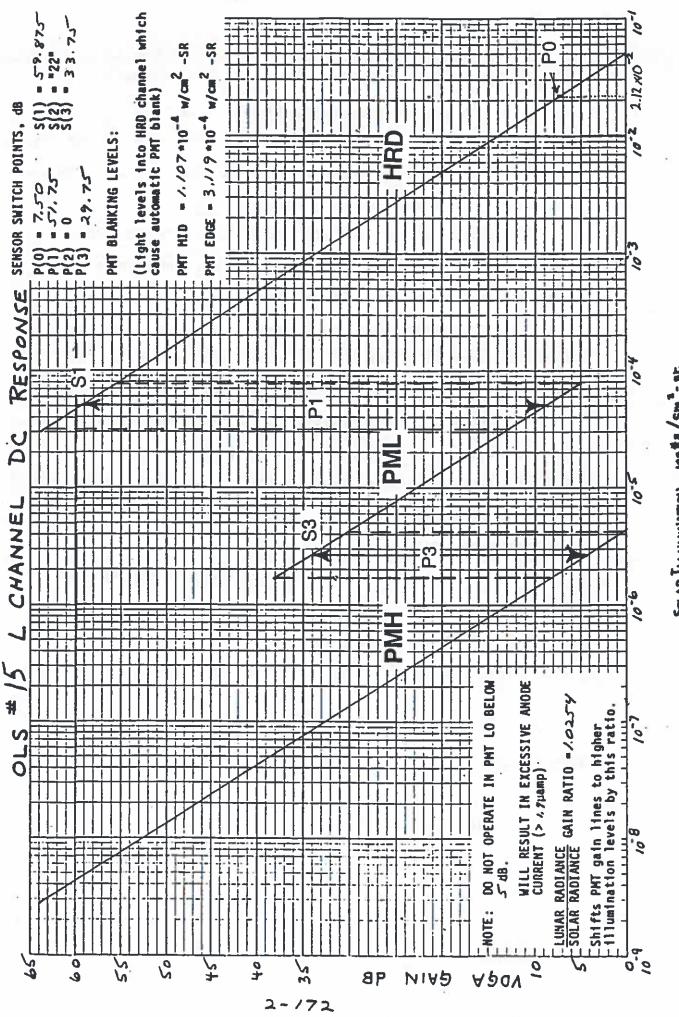


2.4 Radiometeric Accuracy (Cont'd)

2.4.2 Daytime Radiometric Accuracy (3.2.1.1.4.2)

OLS #15 achieved the 7% absolute radiance requirement by setting the HRD channel gain as shown on the L channel DC Response plot, using the calibrated light source (VULS).

The analysis of the calibration accuracy and the L-Day channel stability show within-specification performance. The gain ratios (PMH/PML, PML/HRD, and PMH/HRD) were measured (using the VULS), nine times during Acceptance Test in test 6x2x1.ST, and vary less than 0.3% from the average of the ratios. The gain ratios measured in test 6x2x2.ST using a less accurate test method show greater variation.


The plot of L DC Response contains the calculated sensor switch points, S(x), and relative gains P(X), which are stored in the OLS Constants Memory page zero, locations 071 through 077. P(2) and S(2)represent the bypass of the PMT 1/9 mode, which is not usually implemented on orbit.

OLS #15 exhibited the lower optics transmission that has been observed on all 5D3 OLS units. The OLS #15 transmission was observed to drop 1.4 dB from room temperature to +5°C, and has resulted in P (O) being set at 7.50 dB rather than the normal setting of approximately 6 dB.

ATTACHMENT: OLS #15 L Channel DC Response Plot Table 2.4.2-1 OLS #15 DC Response Stability Table 2.4.2-2 OLS #15 PMT/HRD DC Response vs. SSS Temp.

2-171

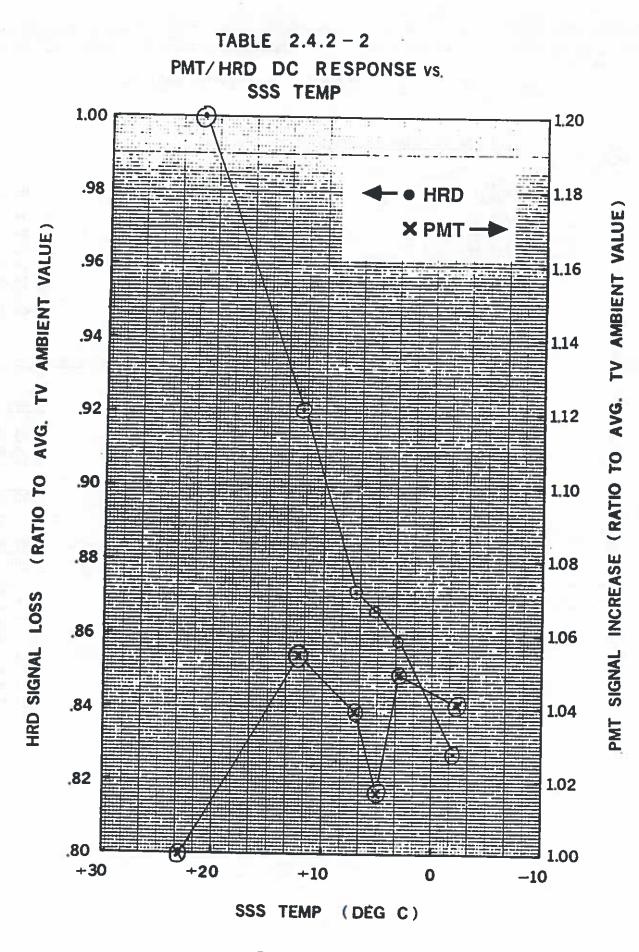
d/07838

Sala ILUMHATION, wats/cm3- st.

Table 2.4.2-1

OLS #15 L DC Response Stability

Stability vs. Time (6x2x1.ST data using VULS)


DATE	<u>PMT HI</u> PMT LO dB	<u>PMT LO</u> <u>HRD</u> dB	<u>PMT HI</u> HRD dB
03/04/88	29.72	50.05	79.78
04/18/88	29.72	50.38	80.10
04/19/88	29.72	50.35	80.07
05/15/88	29.73	50.25	79.97
07/19/88	29.72	50.23	79.95
Average	29.72 dB	50.25 dB	79.97 dB
(Direct Multiple)	(30.62)	(325.5)	(9966)

Stability vs. Temperature (6x2x2.ST data using half sphere source)

DATE	ENVIRONMENT	PMT HI PMT LO dB	PMT LO HRD dB	PMT HI HRD dB
04/06/88	TV Amb	29.76	40.05 40.30	69.81 70.03
04/20/88 05/21/88	TV Amb TV Amb	29.74 29.64	40.58	70.03
Average		29.71 dB	40.31 dB	70.02 dB
DATE	ENVIRONMENT	<u>PMT HI</u> PMT LO dB	<u>PMT LO</u> <u>HRD</u> dB	<u>PMT HI</u> HRD dB
05/04/88	+5/+12	29.66	41.76	71.42
06/02/88	+5/-8	29.67	42.00	71.67
06/10/88	+12/+15	29.71	41.09	70.80
06/12/88	-2/-11	29.58	42.40	71.98
06/15/88	-2/-11	29.69	42.33	72.02
06/16/88	+7/+12	29.64	41.70	71.34
06/21/88	+3/-8	29.56	42.03	71.59
06/27/88	+5/-8	29.62	42.00	71.63
Average		29.64 dB	41.91 dB	71.56 dB

2-173

d/0783B

2-174

X 38

2.4 <u>Radiometric Accuracy</u>, (Cont'd)

2.4.3 <u>Nighttime Radiometric Accuracy</u> (3.2.1.1.4.3)

The PMT accuracy is required to degrade by no more than 60% from its initial accuracy at time of Acceptance testing to end of 3 year orbital life.

The 5D-3 OLS System Summary Report indicates PMT channel stability to be within 25.7% over the mission life so that the PMT meets this specification requirement. The above figures do not include corrections utilizing on-board LED calibration. The PMT CAL LED is extremely stable, and has an essentially constant output over the mission life.

The DC response curve of the OLS #15 PMT is shown in the L Channel. DC Response curve in paragraph 2.4.2. The PMT signal increase with SSS temperature is shown in Figure 2.4.2-2.

ATTACHMENT: Table 2.4.3-1 PMT CAL Baseline data

(See para 2.4.2 attachment for L. Chan. DC Response curve)

2-175

TABLE 2.4.3-1 PMT CAL BASELINE DATA

The PMT Cal voltage EST is a monitor of PMT sensitivity and stability characteristics. In order to relate on-orbit measurement of PMT CAL to measurement during Acceptance Test, the following data are provided. PMT CAL Voltage (EST #40) and PMT BU (Back-up) CAL V (EST #41) are sampled 500 times in test 6x6x2.ST. The PMT Cal voltage EST output is tabulated below.

TABLE 2.4.3-1

PMT CAL BASELINE DATA

DATE	SSS TEMP	<u>Output voltage (mV)</u>	
		PMT CAL V (EST #40)	PMT BU CAL V (EST #41)
2-23-88	+25	2509	2487
3-03-88	+25	2454	2435
4-07-88	+25	2488	2470
5-04-88	+ 5	2390	2374
5-15-88	+25	2462	2443
5-22-88	+25	2479	2459
6-02-88	+ 5	2382	2362
6-18-88	+ 7	2378	2364
6-22-88	+ 3	2372	2453
6-29-88	+ 5	2378	2362
	AVERAGE	2429	2411
Max change	from AVERAGE	3.29%	3.15%

2-176

BVS 2414 R

REV -

2.4 RADIOMETRIC ACCURACY, (Cont'd)

2.4.4 Gain Control Accuracy (3.1.4.4)

Along-Scan Gain Control (ASGC) accuracy is within the specification limit of 4dB of the smooth monotonic curve drawn through the nominal values of Gain Value versus Scense Solar Elevation (GVVSSE), tabulated in para 3.2.1.1.1.4 of DMSS-OLS-300.

System Tests 5x6x3.ST and 5x6x6.ST exercise the ASGC function through various combinations of extremes of slope and bias adjustment and measure channel output for a wide range of values. These are automatically compared against stored test limits which ensure spec compliance.

An analysis using the ASGC software algorithm showing 3.25dB maximum error is summarized in the System Summary Report paragraph 3.5.4.

ATTACHMENTS: None.

and the second second

2.4 RADIOMETRIC ACCURACY, (Cont'd)

2.4.5 <u>Gain Control Adjustability</u> (3.2.1.1.4.4 et al)

The OLS #15 Gain Control Adjustability is the same as for 5D-1 systems. The OLS 5D-3 System Summary Report paragraph 3.5.5 contains the analysis required to demonstrate conformance with the specifications, with additional information below.

TERMINATOR LOCATION (3.1.4.5.1)

The GNC Command (an uplink command) has a sub mode (GNC 10 Ø X) which allows the GVVSSE bias (terminator location) to be adjusted by X degrees, where X is a 6-bit 2's complement word with an LSB of

0.5°. This results in the required range of \pm 15.5 degrees. GAIN CHANGE RATE (3.1.4.5.2)

The GNC command submode (GNC 10 1 X) allows the GVVSSE slope to be varied by a factor of 1+X over \pm 48% in 1.6% increments where X is a 6-bit 2's complement word with an LSB of 2⁻⁶. This results in the required range of \pm 48%.

MAXIMUM GAIN SETTING (3.2.1.1.4.5.3)

The maximum ASGC gain is commandable. An operational value is determined in Early Orbit Calibrations. The value is stored in the Operational Constants Memory location page Ø Address 104 (BCMAX). The ASGC function & performance are exercised in tests 5x6x3.ST & 5x6x6.ST

d/07838

2-178

COMMANDABLE T-CHANNEL GAIN (3.2.1.1.4.5.4)

The T-Channel Commandable Gain is exercised in test 6x8x2.ST. The channel output is measured for the entire range of commandable gains. The T Channel Gain is required to have the capability of being varied by command to be between 128% and 135% of the established minimum gain value (0 dB).

The actual percentage of TGAIN change measured in test 6X8X2.ST for OLS #15 was 131.6% for T Right and 131.7% for T Left.

Each step of TGAIN is required to be between 1.0% and 3.0% above the preceeding lower gain value. Measured gain steps on OLS #15 ranged from 1.33% to 2.37%, within specification.

COMMANDABLE T CHANNEL LEVEL (3.2.1.1.4.5.5)

The T Channel Commandable Level is also exercised in test 6x8x2.ST. The specification requires that TLEVEL be variable over at least a 14° range in steps of 1.1°K or less. Measured results during testing were 14.93° range and step sizes between 0.962°K to 1.028°K worst-case; all within specification.

d/0783B

2.4 RADIOMETRIC ACCURACY, Cont'd

2.4.6 <u>A/D Conversions & Algorithms</u> (3.2.1.1.4.6.2 & 3.2.1.1.4.6.3)

DMSS-OLS-300 specifies that the Stored Smooth Algorithm accuracy with an ideal A/D shall be verified by analysis. OLS 5D-3 System Summary Report contains the analysis which shows that the LS % Full Scale Deviation does meet the specification. The results are summarized below. In summary:

<u>Mode</u>	<u>% Full Scale Deviation</u>	Analysis
LS	<u>< +</u> 2.2%	-1.70%, +2.09%
TS	$\leq \pm 0.4\%$	<u>+</u> 0.39%

The Actual A/D Conversion Radiometric Accuracy was measured in system test 6x10.ST. The worst-case results from the OLS #15 Thermal Vacuum runs (Hot Limits, Cold Limit & Orbit Nominal) are summarized below:

A/D	BSL SLOPE (% DEV FROM IDEAL)	BSL OFFSET (% OF FULL SCALE)	RMS DEV FROM BSL (% OF FULL SCALE)
SDF-L PRIM	+0.04	+0.06	0.05
RED	+0.02	+0.16	0.04
SDF-T PRIM	-0.02	+0.30	0.10
RED	-0.02	+0.26	0.14
RTD-F PRIM	+0.03	+0.00	0.06
RED	+0.03	+0.16	0.05
SPEC	<u>+</u> 1.0	<u>+</u> 1.0	0.50
RTD-S PRIM	-0.02	+0.06	0.05
RED	+0.01	+0.18	0.06
SDS-L PRIM	-0.02	+0.14	0.06
RED		+0.06	0.06
SDS-T PRIM	+0.02	-0.16	0.09
RED	+0.02	-0.18	0.08
SPEC	<u>+</u> 0.5	<u>+</u> 0.5	0.25

2-180

BVS 2414 REV -

d/0783B

and the state

2.5 <u>RADIOMETRIC RESOLUTION</u> (3.2.1.1.5 et al.)

DMSS-OLS-300 apportions the Radiometric Resolution verification between Test and Analysis.

The Fine and Direct Smoothed Radiometric Resolution (para. 3.2.1.1.5.1), as well as the Stored Smoothed A/D Converter Error (para. 3.2.1.1.5.2), were measured in System Test 6x10.ST during the DLS #15 vacuum runs and are tabulated below:

A/	D	(% OF FULL SCALE)	SPEC
SDF-L	PRIM	0.09	+0.8%
	RED	0.09	1 -
SDF-T	PRIM	0.20	+0.8%
	RED	0.32	-
RTD-F	PRIM	0.28	+0.8%
	RED	0.10	-
RTD-S	PRIM	0.11	+0.25%
	RED	0.11	-
SDS-L	PRIM	0.11	+0.5%
	RED	0.11	
SDS-T	PRIM	0.20	+0.5%
	RED	j 0.19 s m	I MILLING D

PEAK DEV FROM BSL

The Stored Smoothed Algorithms Resolution with Ideal A/D (para. 3.2.1.1.5.2.1) are verified by Analysis in OLS 5D-3 System Summary Report, and are summarized in Table 2.5.1.

d/07838

TABLE 2.5-1

Stored Smoothed Algorithms

Resolution With Ideal A/D

ITEM	SPEC	ACTUAL
Accuracy		
LS Algorithm	< <u>+</u> 2.2%	-1.70% +2.09%
TS Algorithm	< <u>+</u> 0.4%	<u>+</u> 0.39%
Resolution		
LS Algorithm	<1.6%	1.57%
TS Algorithm		
Population 1 Density Quantization	25% <0.8%	25% 0.78%
Population 2 Density Quantization	75% <0.4%	75% 0.39%
Population Distribtution	Uniform	Uniform
Quantization Capability	0.4%	0.4%

d/07838

2.6 NOISE

2.6.1 <u>T Channel Noise</u> (3.2.1.1.6.1)

The T Channel noise equivalent temperature difference (NETD) is specified between 210K and 310K, although the T channel responsivity extends down to 190K.

The NETD is measured during T Channel DC response tests in the Thermal Vacuum Chamber.

The Channel views a stable blackbody target at 210K (worst-case noise). The channel output is sampled & the noise (std. deviation) of 500 samples is converted to NETD using the following formula:

NETD = [Avg Noise in Volts * 24 °/Volt] * 1.074 (the shaper slope correction)

The OLS #15 NETD is in-spec. The noise in the right segment is approximately 14% larger than in the left segment.

	TF	TS	TS Fallback
SPEC	2.2°K	0.90°K	1.3°K
Worst-Case Measured NETD	0.707°K	0.393°K	0.272°K
Worst-Case Average NETD	0.652°K	0.364°K	0.242°K

ATTACHMENT: Table 2.6.1-1 OLS #15 NETD

2-183

d/0783B

				-		OLS #15 PR	OLS #15 PRIMARY SIDE NETD	NETD		
						_	Nois	Noise (mV)		31
			5		FINE	SHOOTH	FINE	SHOOTH	FINE	SMOOTH
	555	Ξ_	- KL	=	RGT	RGT	MID	MID	LET L	LFT
6/03/88	_ <u>\$</u>	9	3/3	12	23.39	12.85	15.24	8.63	21.82	10.62
6/01/88	+4	+12	[3/3]	6	24.07	13.39	16.99	9.48	20.62	10.30
6/10/88	[+]	+12	4/4	6	24.16	14.04	15.76	9.03	20.89	11.20
6/12/88	E I	9	4/4	13	24.91	13.50	16.45	9.38	22.33	i 11.80
6/13/88	1+1	112	4/4	6	24.95	14.13	14.96	8.51	22.36	11.54
6/15/88	۳ ۲	ዋ	4/4	12	+27.41	14.87	18.35	10.01	23.34	12.41
6/16/88	9	+12	4/4	6	25.12	14.51	16.80	9.07	22.71	11.29
6/21/88	+5	ዋ	4/4	12	26.82	*15.25	16.71	10.47	22.82	12.14
6/29/88	\$ 	9	4/4	21	26.89	14.46	18.07	16.6	22.33	11.45
	N N	AVERAGE			25.30	14.11	16.72	9.39	22.14	11.42
	2	NETD			109. 01	. 339	.401	.225	531	.274
Ľ	NETD Corr., for Shaper Slope x *	haper	Slope	ekk	.652	.364	.431	.242	.570	.294
			1			OLS #15 REDUNDANT	DUNDANT SI	SIDE NETD		
06/02/88	÷5	ዋ	3/3	12	23.10	12.70	15.48	9.02	120.97	10.70
06/07/88	+3	[+]3	3/3	6	23.23	13.55	16.12	9.78	20.54	10.35
06/16/88	9 1	+12	4/4	6	25.33	14.60	16.31	9.20	22.72	11.25
06/21/88	7	9	4/4	12	26.79	15.00	17.60	*10.55	22.79	12.0]
06/28/88	<u>\$</u>	9	4/4	2	26.11	14.38	17.89	9.52	22.52	[11.22
								r		
	AVI	AVERAGE	ł.		24.91	14.05	16.68	9.6	191.91	11.11
	Ž	NETD			. 598	.337	.400	.231	.526	.267
ŝ										

.

Table 2.6.1-1

* Worst case measured *Shaper slope correction factor = 1.074

1

B. ALLA

F

ALL ALL

E ...

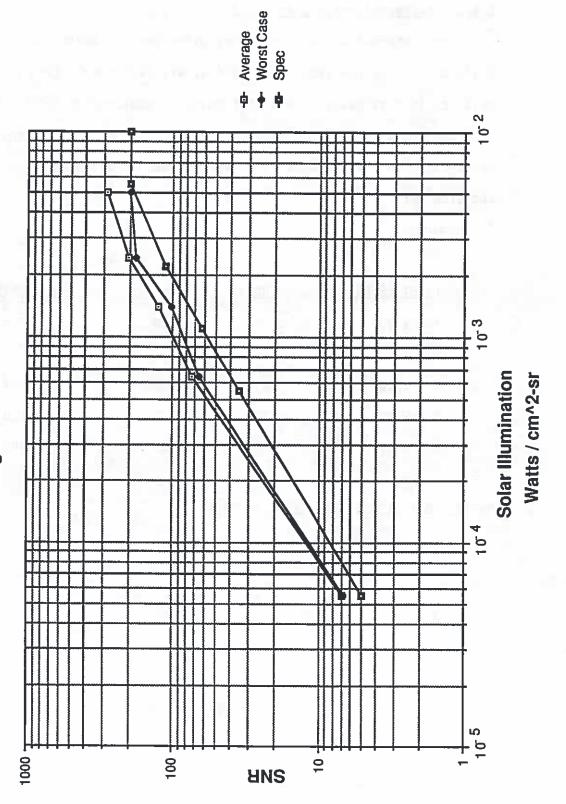
1

2.6 NOISE (Cont'd)

2.6.2 <u>L-Channel Noise (Day)</u> (3.2.1.1.6.2)

The L Channel Noise is measured using the calibrated Variable Uniform Light Source (VULS) and half-sphere reference. Dark noise is measured in test 6x3x1.ST and shot noise is measured in 6x3x5.ST.

The OLS #15 HRD is in-spec for the entire range of illumination. Worst-case HRD SNR is better than spec by 36% at 5.5 x 10^{-5} watts/cm²-sr.


In summary:

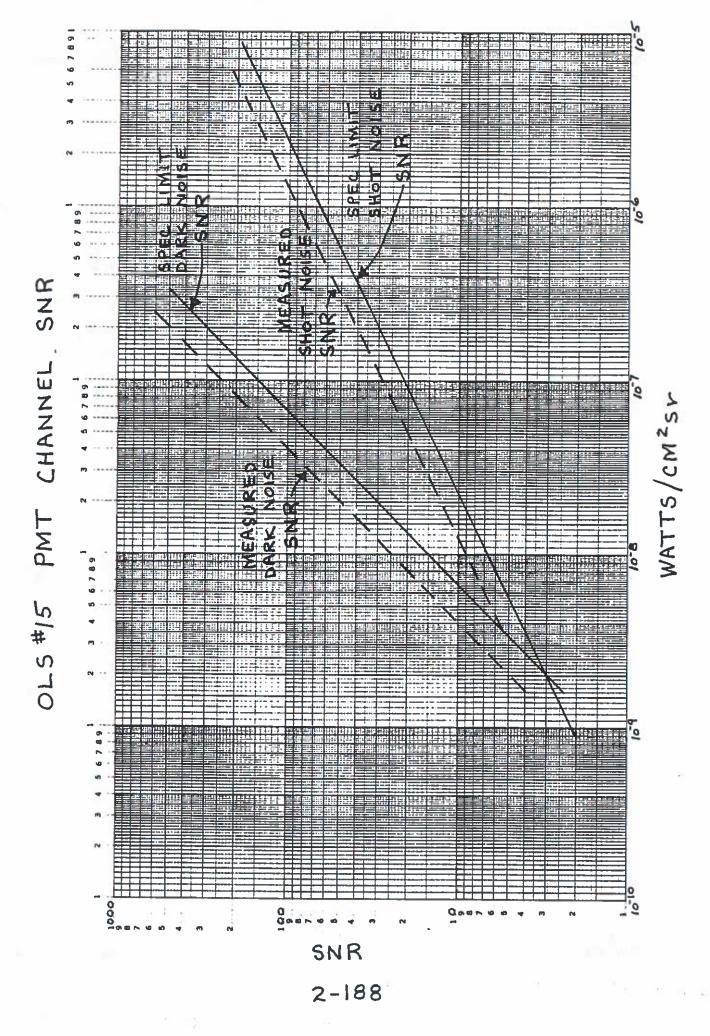
SNR			
<u>SPEC</u>	AVERAGE	WORST CASE MEASURED	
5	6.9	6.79	
34.8	61	54	
62.3	110	89	
112	180	160	
200	300	205	
	5 34.8 62.3 112	SPEC AVERAGE 5 6.9 34.8 61 62.3 110 112 180	

ATTACHMENT: OLS #15 HRD Channel SNR Graph

2-185

2-186

2.6 NOISE (Cont'd)


2.6.3 <u>L Channel Noise (Night)</u> 3.2.1.1.6.3)

The PMT dark noise is measured in all environments throughout the Acceptance Test in Tests 6x3x1.ST, 6x3x2.ST and 6x3x4.ST. The SNR is calculated from the measured noise (std. deviation of multiple voltage samples) vs. light level and compared against spec values.

The minimum OLS #15 PMT Shot Noise SNR is 8.0 at 8.0 x 10^{-9} watts/cm²-Sr vs. a spec requirement of 6.0. The measured Dark Noise SNR is also better than spec requirement (19.5 vs. spec of 12).

ATTACHMENT: OLS #15 PMT channel SNR graph.

d/0783B

(H)

2.6 NOISE (Cont'd)

2.6.4 Dark Current (3.2.1.1.6.4)

The Dark Current (the PMT noise with no signal input) is determined from the graph of PMT SNR in paragraph 2.6.3. The Dark Noise SNR is calculated from data gathered during PMT Smooth Noise measurements. These measurements are made in Test 6x3x1.ST during Thermal Vacuum testing. For the OLS #15, the average Dark Noise SNR at 8 x 10^{-9} watts/cm²-SR is 20.8, or 28.8% of the noise corresponding to an SNR of 6. The minimum Dark Noise SNR at 8 x 10^{-9} watts/cm²-SR is 19.5, or 30.8% of the noise corresponding to a SNR of 6. This is well within the spec requirement for the dark current to be 50% or less of the noise corresponding to an SNR of 6.00.

State and the second second second

2.6 NOISE, (Cont'd)

2.6.5 <u>Stability</u> (3.2.1.1.6.5) (L - Channel (night))

The OLS 5D-3 System Summary Report contains the analysis for this spec requirement.

The loss in sensitivity after 3 years on orbit of the PMT channel will be < 23%. This would require 2.27dB change in VDGA gain to compensate and over 6dB of VDGA gain is available.

ATTACHMENT: None.

÷

d/07838

ŀ.

2.6 NOISE (Cont'd)

2.6.6 Along-Track Noise Integration (3.2..1.1.6.6)

OLS 5D-3 System Summary Report contains the analysis which concludes that the OLS 5D-3 algorithm is consistently above 0.6 times the SNR resulting from perfect integration with 8 bit A/D for T Channel; and above $1/\sqrt{2}$ times the SNR resulting from perfect integration with 6-bit A/D for L channel. Therefore, the Along-Track Noise Integration is in-spec.

2-191

ATTACHMENT: None.

d/0783B

2.6 NOISE, (Cont'd)

2.6.7 <u>Glare Suppression</u> (3.2.1.1.6.7)

OLS 5D-3 System Summary Report contains the analysis which verifies that the OLS does provide effective protection against solar glare for sun angles between 75° and 95°.

ATTACHMENTS: None.

4

d/0783B

2-192

2.7 <u>SURVIVABILITY</u> (3.2.1.1.7)

The OLS 5D-3 System Summary Report contains calculations of survivability of optics & detectors with protective shutter/cover. All OLS 5D-1 since OLS #2, all 5D-2 & 5D-3 systems contain a Deployable Optics Cover which can survive the requirement of 50 minutes continuous exposure to solar radiation & thus meet the requirements of this spec paragraph. See BVS 2353 (Verification of Survivability Requirements) for further details.

ATTACHMENTS: None.

1

2.8 <u>SCAN ANGLE</u> (3.2.1.1.8)

Tests 6x7x1.ST and 6x7x3.ST (End of Scan Vignette for HRD & T channels respectively) measure the delphi number at which 1% vignetting of scene begins to occur. The measured delphis enable calculation of the altitude needed to obtain contiguous coverage at the equator. The contiguous coverage requirement is based on the average of +Z and -Z scan angles. For OLS #15, the following results were obtained:

CHANNEL	DELPHI	SCAN ANGLE	CONTIGUOUS COVER	AGE ABOVE:
+Z HRD	+991.5	+55.99°	426.77 n. mi.	427.32 avg.
-Z HRD	-990.5	-55.93°	427.87 n. mi.	
+Z T	+984.5	+55.59°	434.44 n. mi.	430.10 avg.
Z T	-992.5	-56.04°	425.75 n. mi.	

Thus, both the HRD channel and the T channel meet the requirements for contiguous coverage above 440 naut. mi, since both channels will provide contiguous coverage for all altitudes above 430.10 naut. mi.

ATTACHMENTS: None.

d/0783B

2-194

2.9 DATA COLLECTION RATE (3.2.1.1.9)

OLS #15 does scan the field of view at the prescribed 11.88 +/- .12 Hz rate. This parameter is measured in Scanner Functional tests 5x12x1.ST (Primary Side) and 5x12x2.ST (Redundant Side).

The test results are summarized below for all TV tests:

Date	Fre <u>Primary</u>	quency, Hz <u>Redundant</u>
5-04-88 Pre Vib	11.86	11.86
6-06-88 Post Vib	11.86	11.86
6-19-88 Hot Limit	11.84	11.84
6-24-88 Cold Limit	11.86	11.86
7-01-88 Orbit Nom.	11.86	11.86

ATTACHMENTS: None.

d/0783B

1

2-195

2.10 POWER (3.3.1 and 3.3.2)

Both +28V and +5V power is measured and monitored continuously throughout all of Qualification Testing.

The power required in the 8 Development-Spec-defined modes is tabulated below. The Development Spec Power Profile is measured in test 5x2x11.ST for modes 1 through 8 and 5x2x2.ST for mode 0.

OLS #15 5V power consumption is in spec for all modes in the primary and redundant configurations.

10V power consumption was not tested on OLS #15. The current System Test Equipment is not capable of monitoring 10V power. Analysis of the components using S/C supplied 10V power indicates that 5D-3 10V power consumption is in spec.

DMSS-OLS-300 limits 28V power consumed for SSS thermal control to 23 watts maximum. SSS heater power consumption was not measured on OLS #15. Analysis of the heater resistances and tolerances indicates that 5D-3 SSS heater power consumption is in spec.

OLS #15 28V power consumption is in spec for all modes in the primary and redundant configurations. Fallback (dual power) configuration power consumption is also in spec. See the attached table for further details.

ATTACHMENTS: OLS #15 Power Profile

2-196

d/0783B

WORST CASE (CALCULATED) 90.2 126.2 134.2 142.2 176.2 185.2 214.2 228.2 236.2 DUAL POWER** 131W 148W 159W 168W 168W 2210W 210W 2210W 2250W 2250W <u>28</u> TV +5/-8 6-26-88 3.05 3.91 3.91 3.68 3.68 3.68 3.68 3.68 3.66 3.65 3.65 53 97 97 11 98 11 99 11 199 199 TV COLD LIM 6-24-88 2.75 3.50 3.31 3.27 3.26 3.26 3.26 3.25 3.25 3.25 53 90 99 107 1141 177 193 201 201 HOT LIM 6-16-88 4.39* 4.12 4.26 3.87 4.11 4.12 3.43 4.12 4.10 54 90 98 105 179 179 179 201 201 SINGLE POWER Z 5-14-88 POST VIB 3.13 3.57 3.48 3.33 3.39 3.41 3.50 3.52 3.39 55 91 97 140 147 191 191 3-02-88 172.4 185.9 192.9 54.2 89.9 96.4 144.8 102.1 137.7 PRE VIB 2<u>8V</u> MODE/LIMIT <u>5V</u> MODE/LINIT 884 1054 1164 1254 1574 1574 1574 1984 2074 4.3H 4.34 4.34 4.3W 4.3W 4.3W 4.3W 4.3W 218H 0 ~ 0 0 F 0 V ð ŝ ە 0 0 ~

*Out-of-spec reading **Represents sum of (1) Worst-Case Reading (Single Power) plus (2) Measured delta between (max dual power minus max single power)

7-197

OLS #15 POWER PROFILE

the state of the second

2.11 MASS

2.11.1 <u>Total Mass</u> (3.4.1)

The weights of all OLS #15 components were measured for sell-off on 3 Aug 88 and 10 Nov 88. The tape recorder and encrypter serial numbers are those belonging to the system at OLS #15 sell-off and may change.

All Westinghouse furnished parts meet their center of gravity specification limits and their maximum specified weight allocation except system cables, however the total system weight does not exceed the max allowable weight. Typical encrypters exceed the spec limit in weight and center-of-gravity. The encrypters are GFE to WEC and their weight and C.G. are not controlled by WEC.

The total weight of the OLS #15 AVE is 293.04 pounds, (less BBX's, but including GSSA/DOC & Test Cable), vs. a spec limit of 298 pounds.

ATTACHMENT: OLS #15 Weight and Center-of-Gravity Tables

d/0783B

2-198

TABLE 1

the second se

MESTINGHOUSE FURNISHED PARTS SUPPLIED WITH OLS 15 SYSTEM

SUMMARY OF WEIGHT AND CENTER GRAVITY

ι

	TINU	_										LIFTCHT		
UNIT	SER.		×			>					HAXA	MPR**	MPR **	
	NO.	SPEC	MPR	ACT	SPEC	HPR	ACT	SPEC	MPR	ACT	SPEC	W/O CONT	3	ACT
	_			_	_		_		_	_				
\$55	5010	5010 1.8 <u>+</u> .5 1.8 <u>+</u> .5	1.8 <u>+</u> .5		6.2 <u>+</u> .5	6.24	5 6.11	$ 1.79 6.2\pm5 6.2\pm5 6.11 0.7\pm5 0.7\pm6 0.63 59.0$	0.7 <u>+</u> .6	0.63		54.92	56.02	55.29
SPS	5010	5010 3.0±.5 3.0±.5	3.0 <u>+</u> .5	—	13.8 <u>+</u> 1.(o 13.8 <u>+</u> 1.	07.51 0.	2.92 13.8±1.0 13.8±1.0 13.70 8.6±.8 8.6±.8 8.53 70.0	8.6 <u>+</u> .8	8.53	70.0	67.60	68.95	68.75
sPU	5010	5010 3.04.5 3.04.5] 3.0 <u>+</u> .5	—	6.6 <u>+</u> .5	0.6 <u>+</u> .!	5 6.74	2.97 6.6±.5 6.6±.5 6.74 6.0±.5 6.0±.5 5.91 18.0	6.0 <u>+</u> .5	16.3	18.0	00.11	17.34	17.13
PSU	5010	5010 2.8 <u>+</u> .5 2.8 <u>+</u> .5	2.8 <u>+</u> .5		1.0±.6	17.04.1	5 6.73	2.79 7.0±.6 7.0±.5 6.73 7.2±.5 7.2±.5 7.09 27.0	1 3.2±.5	1 7.09	27.0	25.93	26.45	26.50
nso	1 5010	5010 1.2 <u>+</u> .25 1.2 <u>+</u> .25 1.30 4.0 <u>+</u> .5 4.0 <u>+</u> .5 4.34 3.0 <u>+</u> .5 3.0 <u>+</u> .5 2.71	i 1.2 <u>1</u> .25	1.30	4.0 <u>+</u> .5	[4.0 1 .	5 4.34	3.0 <u>+</u> .5	3.0 <u>+</u> .5	1 2.71	4.0	3.47	3.53	3.49
GSSA/DOC	3 5010	GSSA/DOC 5010 4.2±.5 4.2±.5 4.32 +0.1±.3 +0.1±.3 0.35 2.4±.5 2.5±.5 2.66	4.24.5	4.32	+0.] <u>+</u> .3	+0.1 <u>+</u> .≙	3 0.35] 2.4 <u>+</u> .5	2.5 <u>+</u> .5	2.66	0.6	7.83	1.99	7.83
PR)	052	052 3.45±.253.4.25 3.45±.253 3.36 6.36±.256.36±.25 6.34 4.23±.254.23±.25 4.28 22.75 21.14	i 3.45 <u>+</u> .25	i 3.36	6.36 <u>+</u> .25	5 6.36 <u>+</u> .2	25 6.34	4.23 <u>+</u> .2	5 4.23±.2	5 4.28	22.75	21.14	21.57	21.13
PR2	053	053 3.45±.253.45±.253 3.30 6.36±.256.36±.251 6.52 4.23±.2544.23±.254 4.29 22.75 21.14	i 3.45 <u>+</u> .25	i 3.30	6.36 <u>+</u> .2	5 6.36 <u>+</u> .1	25 6.52	4.23 <u>+</u> .2	5 4.23±.2	5 4.29	22.75	21.14	21.56	21.09
PR3	054	054 3.45±.2533.45±.251 3.43 16.36±.2516.36±.251 6.26 4.23±.254.23±.251 4.28 22.75 21.14	13.45 <u>+</u> .25	5 3.43	6.36 <u>+</u> .2	5 6.36 <u>+</u> .2	25 6.26	4.23 <u>+</u> .2	5]4.23±.2	5 4.28	22.75	21.14	21.56	21.15
PR4	055	055 3.45±.25 3.45±.25 3.24 6.36±.25 6.36±.25 6.36 4.23±.25 4.23±.25 4.15 22.75 21.14	13.45 <u>+</u> .25	3.24	6.36 <u>+</u> .2	5 6.36 <u>+</u> .1	25 6.36	4.234.2	5 4.23 <u>+</u> .2	5] 4.15	22.75	21.14	21.56	21.05
CABLES	Ξ	•	1	۱ 	•	1 	: 	•	+	-	32.0	29.41	30.00	23.63
TEST	_	_	_	_	_	_	_	_		_				
1 CABLE	1 (2)	-	,	-	-	-	-	-	-		6.0	6.0	6.0	6.0
* DMSS-	-01530(* DMSS-OLS-300, SCN 011, 20 NOV	, 20 NOV	1987								-		-
*** 503 H	lass Pro	** 5D3 Mass Properties Report	leport						TOTAL	TOTAL WEIGHT	300	287.72	300 287.72 296.53 293.04	293.04
					•									

 (1) SERIAL NUMBERS ARE AS RECORDED ON DATA SHEET
 (2) A MASS ALLOCATION OF 6 LBS. HAS BEEN ASSIGNED FOR TEST CABLE FROM THE TOTAL OLS MASS ALLOCATION. TEST CABLE IS PROVIDED IS PROVIDED AND CONTROLLED BY THE SPACECRAFT INTEGRATOR.

2-199

....

INULE 2

GOVERNMENT FURNISHED PARTS SUPPLIED WITH OLS 15 SYSTEM

SUMMARY OF WEIGHT AND CENTER GRAVITY

helen i

4

V V Z MAX* MAR* MAX* MAX* <th>Y Y ACT SPEC MPR ACT I <th< th=""><th>Z MPR 2.2±1 </th><th>-</th><th>HPR**</th><th>144 000</th><th></th></th<></th>	Y Y ACT SPEC MPR ACT I <th< th=""><th>Z MPR 2.2±1 </th><th>-</th><th>HPR**</th><th>144 000</th><th></th></th<>	Z MPR 2.2±1	-	HPR**	144 000	
ACT SPEC HPR ACT SPEC SPEC <th>ACT SPEC MPR ACT ACT<!--</th--><th> HPR 2.2<u>+</u>.) </th><th>•</th><th></th><th></th><th></th></th>	ACT SPEC MPR ACT ACT </th <th> HPR 2.2<u>+</u>.) </th> <th>•</th> <th></th> <th></th> <th></th>	HPR 2.2 <u>+</u> .)	•			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2.2 <u>+.</u>]		W/O CONT		ACT
.1 0 12.7±.1 2.7±.1 0 12.7±.1 0 13.67 13.50 13.59 1 .1 0 12.7±.1 2.7±.1 0 12.7±.1 0 13.67 13.50 13.59 1 .1 0 12.7±.1 2.7±.1 0 12.2±.1 0 13.67 13.50 13.59 1 1 <t< td=""><td>.1 0 2.7±.1 2.7±.1 0 .1 0 2.7±.1 2.7±.1 0 0 NOV 1987 as measured on 24 units or these units.</td><td></td><td> 3.67</td><td>3.50</td><td>3.59</td><td>0</td></t<>	.1 0 2.7±.1 2.7±.1 0 .1 0 2.7±.1 2.7±.1 0 0 NOV 1987 as measured on 24 units or these units.		3.67	3.50	3.59	0
.1 0 2.7±.1 2.7±.1 0 3.56 3.50 3.59 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 NOV 1367 NOV 1367 Nov 1367 Nov 1367 Nov 1367 Nov 1367 Nov 1367 not there units. Nov 1367 10.50 10.77 1	.1 0 2.7±.1 2.7±.1 0 	1.7.2	3.67	3.50	3.59	0
I I I I I I I I NOV 1987 TOTAL WETGHT 111.00 10.50 10.77 I As measured on 24 units Total weren 111.00 10.50 10.77 I Dr these units. 2-200 2-200 2-200	<pre>I I I I I I I I I I I I I I I I I I I</pre>	2.24.1	3.66	3.50	3.59	0
NOV 1987 NOV 1987 In these units In these units. 2-200	<pre>LIS-300, SCM 011, 20 NOV 1987 ss Properties Report ge Weight and C.G. as measured on 24 units be used as a guide for these units. Weight - 3.60 Lbs. CG. X - 1.87 in.</pre>		_	-	-	
NOV 1987 as measured on 24 units or these units. 2-200	<pre>DLS-300, SCM 011, 20 MOV 1987 ss Properties Report age Weight and C.G. as measured on 24 units be used as a guide for these units. Weight - 3.60 Lbs. CG. X - 1.87 in. Y - 2.77 in. Z - 2.19 in.</pre>		-		-	
WOV 1987 as measured on 24 units or these units. 2-200	DLS-300, SCM 011, 20 NOV 1987 ss Properties Report age Weight and C.G. as measured on 24 units be used as a guide for these units. Weight - 3.60 Lbs. CG. X - 1.87 in. Y - 2.77 in. Z - 2.19 in.	TOTAL WEIGHT		1 10.50	10.77	0
WoV 1987 as measured on 24 units or these units. 2-200	<pre>OLS-300, SCN 011, 20 NOV 1987 ss Properties Report age Weight and C.G. as measured on 24 units be used as a guide for these units. Weight - 3.60 Lbs. CG. X - 1.87 in. Y - 2.77 in. Z - 2.19 in.</pre>					2
5-200	<pre>ss Properties Report age Weight and C.G. as measured on 24 units be used as a guide for these units. Weight - 3.60 Lbs. CG. X - 1.87 in. Y - 2.77 in. Z - 2.19 in.</pre>					
as measured on 24 units or these units.	<pre>ss Properties Report age Weight and C.G. as measured on 24 units be used as a guide for these units. Weight - 3.60 Lbs. CG. X - 1.87 in. Y - 2.77 in. Z - 2.19 in.</pre>					
as measured on 24 units or these units.	 (3) Average Weight and C.G. as measured on 24 units can be used as a guide for these units. Weight - 3.60 Lbs. CG. X - 1.87 in. CG. 2.19 in. Z - 2.19 in. 					
	age Weight and C.G. as measured on 24 units be used as a guide for these units. Weight - 3.60 Lbs. CG. X - 1.87 in. Y - 2.77 in. Z - 2.19 in.					
	<pre>be used as a guide for these units. Weight - 3.60 Lbs. CG. X - 1.87 in. Y - 2.77 in. Z - 2.19 in.</pre>					
	Weight - 3.60 Lbs. CG. X - 1.87 in. Y - 2.77 in. Z - 2.19 in.					
	CG. X - 1.87 in. Y - 2.77 in. Z - 2.19 in.					
	Y - 2.77 in. Z - 2.19 in.					
	z – 2.19 in.					
2-200		in the second second				
2-200						
	2-200					

151.74

8.6

d/01788

REV -

BVS 2414

1.1.1.1

the firm manufacture

ſ

L. C. C.

in the second

THE LAST MAY

ţ

1.1.4

ţ

2.11 <u>MASS</u> (Cont'd)

2.11.2 <u>Component Mass</u> (3.4.2, 3.4.3)

The mass of the individual components of the OLS #15 AVE are tabulated below.

Component	<u>Spec</u>	Measured
SSS	59.0	55.29
SPS	70.0	68.75
SPU	18.0	17.13
PSU	27.0	26.50
OSU	4.0	3.49
GSSA/DOC	9.00	7.83
PR1	22.75	21.13
PR2	22.75	21.09
PR3	22.75	21.15
PR4	22.75	21.05
881	3.59	3.60*
882	3.59	3.60*
B83	3.59	3.60*
Cables	22.00	23.63

*Nominal Wt.

The cable figure does not include Special Sensor cables which are not supplied by WEC. The cables meet spec per ECP 029R1.

2-201

1. 1997 1. 1997 1.

d/07838

2.12 <u>Cooler Transient Margin</u> (3.2.2.5)

The T channel cone cooler transient cooldown cooling capacity margin is tested by the file 7x7.ST. An external power supply provides 1/2 Watt of heating to the outer stage of the cooler during a normal cooldown. On OLS #15, cone cooler S/N 027 successfully reached its operating set-point with 1/2 watt of external power applied, demonstrating the required margin.

ATTACHMENTS: None

d/07838

ł

2.13 DESIGN FEATURES

The following design features of the 5D-3 OLS are addressed in the analyses. The analyses are contained in the OLS 5D-3 System Summary Report. The requirements of the Design Features are met or exceeded in each category.

SUBJECT	SPEC. PARA.
DESIGN INTERFACES	(3.1.2)
RELIABILITY	(3.2.3)
WEAROUT/CONSUMPTION	(3.2.3.3)
STORAGE	(3.2.3.4)
CONTAMINATION CONTROL	(3.2.3.5)
CORROSION OF METAL PARTS	(3.2.3.6)
MAINTAINABILITY	(3.2.4)
INTERCHANGEABILITY	(3.3.5)

ATTACHMENTS: None.

2-203

BVS 2414 REV -

d/0783B

. . . .

2.14 Redundant and Fallback Subsystems (3.2.3.1 & 3.2.3.2)

Paragraph 3.2.3.1 of the development spec requires the OLS to incorporate the following redundant subsystems:

- (1) Along-Scan Gain Control
- (2) Main Bus Power Supplies
- (3) Data Processors
- (4) Memories
- (5) I/O Interfaces
 - a. Bus Controls
 - b. I/O Controls
 - c. S/C Interfaces
 - d. WOW/Flutter Signals/Clock Drivers
 - e. Drive Motor Controls
 - f. Sensor Controls
 - g. Gain Controls
 - h. Encoder Processors
- (6) Data Channels
 - a. Smooth Video Filters
 - b. Fine Video Filters
 - c. T-Channel Post Amplifiers
 - d. SDS Channel
 - e. SDF Channel
 - f. RTD Channel
 - g. Special Sensor Processors
 - h. Output Data Multiplexers
- (7) Output Switching Unit Oscillator and Clock Circuits
- (8) Digital Tape Recorders (Three of Four Required)

2-204

d/07838

(9) Output Data Channels - (Three of Four Required)

Paragraph 3.2.3.2 requires the OLS to incorporate the following fallback subsystems:

- (1) IMC Shut-Off Mode.
- (2) HRD Detector Single Segment Select, with associated electronics.
- (3) T-Detector Single Segment Select, with associated electronics.
- (4) Digital Generation of Delphi Scanner Clock.
- (5) PMT Shut-Off Mode

Redundant and fallback subsystems are verified by test during the normal test flow either by repetition of the relevant test on the alternate subsystem (in the case of a redundant subsystem) or by tests designed to verify the specific subsystem (in the case of a fallback subsystem). In each case, any out-of-specs or anomalies are reported as part of the relevant Qualification Test Report paragraph.

2.15 ENVIRONMENT

The following environmental requirements are addressed in analyses and are contained in the OLS 5D-3 System Summary Report. The Thermal Vacuum (except CHA), Random Vibration, and shock requirements are verified by the sucessful completion of the approved Qualification Test Procedure.

The 5D-3 Environmental requirements of the Development Specification are met or exceeded by the OLS #15 AVE.

<u>SUBJECT</u>	<u>SPEC. PARA</u>
GROUND ENVIRONMENT	20.2.1
LAUNCH ENVIRONMENT	20.2.2
THERMAL VACUUM (CHA)	20.2.2.1
ACCELERATION	20.2.2.5
CHARGED PARTICLE ENVIRONMENT	20.2.2.6
LAUNCH PRESSURE PROFILE	20.2.2.8
ACCOUSTIC FIELD	20.2.2.9
TRANSPORATION & HANDLING ENVIRONMENT	20.2.3

ATTACHMENTS: None.

d/0783B

3.0 INTERFACE SPECIFICATION REQUIREMENTS

Electrical Interface parameters are measured in the OLS Detailed Electrical Test (T927989) and the OLS Special Sensor Detailed Electrical Test (T927992). These tests demonstrated conformance with all applicable Interface Specification requirements. The only Interface related system measurements that vary significantly from system to system are the SSS Alignment axes which are included here.

d/0783B

3.1 SSS ALIGNMENT AXES

The OLS #15 SSS Reference Plane axes are within the specification allowances. The results of system test and calculation are given below. The designations are those in Interface Spec IS-YD-810, para. 3.2.7ff.

SECONDARY REFERENCE AXES TO PRIMARY AXES

SECONDARY REFERENCES AXES TO MOUNTING (INTERFACE) AXES

 $X_{R-P} = 0.785 \text{ mrad} = 162 \text{ arc sec}$ $Y_{R-P} = 0.233 \text{ mrad} = 48 \text{ arc sec}$ $Z_{R-P} = 0.722 \text{ mrad} = 149 \text{ arc sec}$

 $X_{R-M} = 0.543 \text{ mrad} = 112 \text{ arc sec}$ $Y_{R-M} = 0.138 \text{ mrad} = 28 \text{ arc sec}$ $Z_{R-M} = 0.514 \text{ mrad} = 106 \text{ arc sec}$

These are within the specification limits of 600 arc seconds. The Mounting (Interface) Axes to Primary axes are also calculated, using the computer program REFPLN and are given below:

> $X_{M-P} = 0.262 \text{ mrad} = 54 \text{ arc sec}$ $Y_{M-P} = 0.150 \text{ mrad} = 31 \text{ arc sec}$ $Z_{M-P} = 0.213 \text{ mrad} = 44 \text{ arc sec}$

These are within the specification limits of 120 arc seconds.

d/0783B