DATE 9/09/02

REV B

ORIGINATOR Joe Scilipoti

Joe Scilipoti

OLS #19 ACCEPTANCE TEST REPORT VOLUME I OF IV

FILO

(CDRL A007)

CONTRACT F04701-00-C-0001

Prepared For

UNITED STATES AIR FORCE Space and Missile Systems Center Los Angeles, California

Prepared By

NORTHROP GRUMMAN SYSTEMS CORPORATION Electronic Sensors and Systems Sector Baltimore, Maryland

BVS No: 2759

REVISION SHEET & NOTES PAGE

NOTICE: Unless otherwise instructed, the marked-up pages showing actual changes incorporated in as new Rev. will be maintained in the BVS Master File for future reference and the remainder of the document will be discarded when the new REV. is filed.

REVISION LETTER	REVISION DATE	AFFECTED PAGES	REVISION MADE BY
-	04/01/94	ALL	
Α	02/20/95	Cover, i, ii*, iii*, "1-2", "2-130", "2-131", "2-132"	SCILIPOTI
В	09/09/02	Cover, i, "1-2", "1-4"	SCILIPOTI

^{(*} INDICATES PAGE # IS ONLY CHANGE TO THAT PAGE)

TABLE OF CONTENTS

			PAGE
1.0	Intro	oduction	1-1
	1.1	Summary of System - Specific Parameters	1-2
	1.2	Specification Pass-Fail Summary	1-5
	1.3	Summary of OLS #19 Testing	1-8
	1.4	Configuration & Serialized Assemblies	1-9
	1.5	Thermal Vacuum Profiles	1-24
	1.6	Test History Calendar	1-29
2.0	Deve1	lopment Specification Requirements	2-1
	2.1	Spectra	2-1
	2.2	Geometric Resolution	2-5
		2.2.1 Fine Geometric Resolution - Infrared	2-5
		2.2.2 Fine Geometric Resolution - Daytime Visual	2-22
		2.2.3 Smooth Geometric Resolution - Infrared	2-39
		2.2.4 Smooth Geometric Resolution - Daytime Visual	2-46
		2.2.5 Smooth Geometric Resolution - Nighttime Visual	2-57
		2.2.6 Data Sampling	2-68
	2.3	Geometric Accuracy	2-69
	2.4	Radiometric Accuracy	2-75
		2.4.1 T Channel Radiometric Accuracy	2-75
		2.4.2 Daytime Radiometric Accuracy	2-129
		2.4.3 Nighttime Radiometric Accuracy	2-134
		2.4.4 Gain Control Accuracy	2-136
		2.4.5 Gain Control Adjustability	2-137
		2.4.6 A/D Conversion & Algorithms	2-139
	2.5	Radiometric Resolution	2-140

TABLE CONTENTS (continued)

			<u>PAGE</u>
	2.6	Noise	2-142
		2.6.1 T Channel Noise	2-142
		2.6.2 L Channel Noise - Day	2-145
		2.6.3 L Channel Noise - Night	2-147
		2.6.4 Dark Current	2-149
		2.6.5 Stability	2-150
		2.6.6 Along-Track Noise Integration	2-151
		2.6.7 Glare Suppression	2-152
	2.7	Survivability	2-153
	2.8	Scan Angle	2-154
	2.9	Data Collection Rate	2-155
	2.10	Power	2-156
	2.11	Mass	2-158
		2.11.1 Total Mass	2-158
		2.11.2 Component Mass	2-158
	2.12	Cooler Transient Margin	2-160
	2.13	Design Features	2-161
	2.14	Redundant and Fallback Subsystems	2-162
	2.15	Environment	2-164
3.0	INTER	FACE SPECIFICATION REQUIREMENTS	3-1
	3.1	SSS Alignment Axes	3-2

1.0 INTRODUCTION

The OLS #19 Acceptance Test Report contains the technical data pertinent to the OLS #19 AVE system. This document is intended to present the Acceptance Test data in terms of the requirements of the Prime Item Development Specification (S-DMSP-886) and Interface Specification (ICD-88802).

Test results and data have been reviewed and verified by Westinghouse Electric Corporation and USAF representatives. System performance data, test histories, data summaries and system analyses are included in this report. In addition, a complete set of system log books are on file at the contractor's facility and are available for review. The Test History is in log books K40488-- and K42356--.

This Acceptance Test Report consists of 4 volumes as follows:

BVS	2759	OLS #1	9 Summary	and Specifica	tion Requirements
BVS	2760	OLS #1	9 Acceptan	ce Vibration	Report

BVS 2761 OLS #19 Alignment & Synchronization Curves

BVS 2762 OLS #19 Weight & Center of Gravity

1.1 Summary of OLS 19 System – Specific Parameters

OLS Software Program - OLSP03.FS & OLSE03.FS

Gain Constants and Sensor Switch Points

P(0) = 9.375 dB

P(1) = 51.50 dB

P(2) = 0.00 dB

P(3) = 29.75 dB

S(1) = 59.875 dB

S(2) = 22.00 dB

S(3) = 33.75 dB

(These may change during Early Orbit Calibration.)

PMT HV EST (A532) = $2.967 \text{ volts} \pm 0.250 \text{V}$

Cone Cooler S/N 031 with T detector S/N 4107

T Cold Patch EST (A549) curve – see Table next page.

T Cold Patch EST Voltage = 2.172 ± 0.200 V

TGAIN Left = 7

Right = 5

Both = 6

TLEVEL vs M1 temperature range - see second page following for table

VDGA constant for PMTCAL = $(0440)_8$

Encoder Simulator Bias Constant Prime = -28 Redundant = -28

Encoder Simulator Separation Constant Prime = -1 Redundant = -2

T COLD PATCH TEMP vs. EST VOLTS CONE COOLER S/N 031 T DETECTOR S/N 4107

T (dec to)		
<u>T (deg k)</u>		EST (Volts)
95		6.081
96		5.649
97		5.251
98		4.884
9 9		4.545
100		4.232
101		3.943
102		3.676
103		3.430
104		3.202
105		2.992
106		2.797
107		2.617
108		2.450
109		2.295
110		2.152
111		2.019
112		1.896
113		1.781
114		1.675
115 =		1.576
116		1.483
117		1.398
118		1.318
119		1.243
120		1.174
121		1.109
122		1.048
123		0.991
124		1.938
125		0.889
120		0.003

OLS #19
TLEVEL vs M1 TEMPERATURE RANGE
T DETECTOR S/N 4107

TL	M1 TEMP (°C)		
1111	-28.535°	to	-23.893°
1110	-23.893°		-19.25°
1101	-19.25°		-14.608°
1100	-14.608°		-9.965°
1011	-9.965°		-5.323°
1010	-5.323°		-0.68°
1001	-0.68°		3.962°
1000	3.962°		8.605°
0111	8.605°		13.247°
0110	13.247°		17.89°
0101	17.89°		22.532°
0100	22.532°		27.175°
0011	27.175°		31.817°
0010	31.817°		36.46°
0001	36.46°		41.102°
0000	41.102°		45.745°

TLEVEL command changes should be uplinked to the OLS as a function of M1 temperature to maximize T Channel output accuracy.

1.2 <u>Specification Pass-Fail Summary</u>

The following sections of this Acceptance Test Report contain the test results as they pertain to the Development Specification requirements. Each Test Report paragraph heading is followed by the corresponding Segment Spec paragraph number in parentheses.

The table on the following page summarizes the OLS #19 pass-fail status vs. Development Spec. paragraph number.

DEVELOPMENT SPEC. PARAGRAPH NUMBE	R PASS FAIL
3.2.1.1.1.1 Infrared Spectrum	x = -x = x
3.2.1.1.1.2 Vis-Day Spectrum	x = x
3.2.1.1.1.3 Vis-Night Spectrum	x
3.2.1.1.1.4 Snow Cloud Optics	x x
3.2.1.1.2.1 Fine Geometric Reso	olution - HRD x
3.2.1.1.2.1 Fine Geometric Reso	olution - T
3.2.1.1.2.2 Smooth Geometric Re	esolution - HRD x
3.2.1.1.2.2 Smooth Geometric Re	esolution - T x
3.2.1.1.2.2 Smooth Geometric Re	esolution - PMT x
3.2.1.1.2.3 Data Sampling	x
3.2.1.1.3.1 Along Track Geometr	ric Accuracy x
3.2.1.1.3.2-4 Along Scan Geometr	ic Accuracy x
3.2.1.1.4.1.a T Channel Radiometr Repeatability	ric Accuracy x
3.2.1.1.4.1b T Channel Radiometri Stability	c Accuracy -
3.2.1.1.4.1c T Channel Radiometri Fixed	c Accuracy - x
3.2.1.1.4.2 Daytime Radiometric	Accuracy x
3.2.1.1.4.3 Nighttime Radiometri	c Accuracy x
3.2.1.1.4.5.1 Terminator Location	×
3.2.1.1.4.5.3 Maximum Gain Settin	gs x
3.2.1.1.4.5.4 Commandable T-Chann	el Gain x

DEVELOPMENT SPEC. PARAGRAPH NUMBER	PASS FAIL
3.2.1.1.4.5.5 Commandable T-Channel Level	m x
3.2.1.1.4.6.2/3 A/D Conversions & Algorithms	x
3.2.1.1.5 Radiometric Resolution	X
3.2.1.1.6.1 T Channel Noise	×
3.2.1.1.6.2 L Channel Noise (Day)	x
3.2.1.1.6.3 L Channel Noise (Night)	x
3.2.1.1.6.4 Dark Current	x
3.2.1.1.6.5 Stability	X =
3.2.1.1.6.6 Along-Track Noise Integration	×
3.2.1.1.6.7 Glare Suppression	x III
3.2.1.1.8 Scan Angle	= X 11 V
3.2.1.1.9 Data Collection Rate	x
3.2.1.2 Data Management	X E
3.2.1.3.1 28V Power	x
3.2.1.3.2 5V Power	'l x
3.2.2.1 Total Mass	x
3.2.2.2 Component Mass	I II X
3.2.2.3 Cable Harness Mass	X II II
3.2.2.4 Dimensional Limits	x
3.2.7 Survivability	x
3.3 Design Features	x —
20.2 Environment	x
5.1 Shipping & Storage	x
INTERFACE SPEC PARAGRAPH NUMBER	
3.2.3 Alignment	= x

1.3 <u>Summary of OLS #19 Testing</u>

- 07-23-93 Began system test
- 08-24-93 SPU, PSU and OSU 3 axis vibration, SPS x Axis vibration
- 08-25-93 SSS X axis vibration, SPS Y and Z axis vibration
- 08-26-93 SSS Y and Z axis vibration
- 08-31-93 Began Blue Room Post-vibration tests
- 10-13-93 Began thermal vacuum adjust tests
- 10-25-93 Added two 0.002" shims to HRD Detector-Preamp
 Interface
- 11-02-93 Began thermal vacuum testing
- 11-27-93 Completion of thermal vacuum testing
- 12-03-93 Final Blue Room testing
- 12-03-93 PMT Assembly removed for Autoblank failure troubleshooting & repair
- 01-04-94 PMT 3 axis vibration
- 01-17-94 Return to blue room for system test after troubleshoot and repair of PMT autoblank function
- 01-24-94 Thermal vacuum testing
- 02-01-94 SPS & SPU removed from system test for cleaning
- 02-08-94 Restart thermal vacuum testing
- 02-18-94 SPS to thermal chamber for SDF data grab failure troubleshoot and repair
- 02-27-94 SPS & SPU 1 axis vibration
- 02-28-94 Restart thermal vacuum testing
- 03-06-94 Thermal vacuum testing complete
- 03-07-94 Weight and center of gravity

1.4 <u>Configuration and Serialized Assemblies</u>

The configuration listing on the following pages includes the current configuration of OLS #19 as of 03-15-94.

DESCRIPTION	ASSEMBLY NO.	REV.	100	S/N
Key Drawing	536R500G08	AP		5014
SSS Assembly	693R700G03	AE		5014
W/D	693R662G02	В		-
Cable Assy	633R781G01	Α		-
Cable Assy	633R782G01	-		_
Cable Assy	633R783G01	-		-
Cable Assy	633R784G01	-		-
Cable Assy	633R785G01	Α		-
Cable Assy	432R240G01	-		I -
Cable Assy	644R199G01	В		-
Cable	682R189G01	G		1456002
Cable	693R692G02	J		005
<u>Heat Cont</u>	633R053G20	L		5046
Electronics	633R052G05	AL		5046
<u>Heat Cont</u>	633R053G19	L		5045
Electronics	633R052G05	AL		5045
Heat Cont	633R053G18	L		5044
Electronics	633R052G05	AL		5044
Heat Cont	633R053G17	L		5043
Electronics	633R052G05	AL		5043
<u>osc</u>	623R765G09	AT		5014
IMC LEAD	623R909G01	C		-
Spring Assy	522R210G01	Α		***
Spring Assy	522R210G01	Α		-
Spring Assy	522R210G01	Α		-
Spring Assy	522R210G01	Α		-
Mot Assy	623R894G01	В		-
	1 10			

DESCRIPTION	ASSEMBLY NO.	REV.	S/N
IMC/M3	623R858G01	— F	5015
Assy	522R222G01	В	1014
Assy	522R223G01	ם	1014
Assy	522R222G01	В	1012
Assy	522R223G01	D	1012
Assy	522R302G01	□ A	
Rel Assy	640R701G02	G	5014
R/M EST Assy	644R088G02	J	-
ENPA Assy	682R215G07	ures IW	5014
Cir. Card	682R167G06	man = mental U	5015
Cir. Card	682R112G06	AA	5014
Cir. Card	682R110G07	AD	5015
AUXENCODER	682R300G05	J	5014
Cir. Card	682R149G05		5014
Cir. Card	682R151G05	T= J	5014
SP Assy #1	623R771G01	C	A1011
Flat Spring	522R118H01	ь в В	A1011
SP Assy #2	623R772G01	D D	A1012
Flat Spring	522R118H01	B B	A1012
SP Assy #3	623R773G01	C	A1013
Flat Spring	522R118H01	I I= B	A1013
SP Assy #4	623R774G01	С	A1014
Flat Spring	522R118H01	В	A1014

DESCRIPTION	ASSEMBLY NO.	REV.	S/N
Z Tunnel	758R836G01	В	5014
H.V. Wire	540R582G06	В	
Tunnel Frame	758R832G01	11 A	-
Insulator	758R834G01	gr 1988	_
Z Tunnel	758R837G01	В	5014
H.V. Wire	540R582G04	В	•
Tunnel Frame	758R833G01	A	Ų-L
Insulator	758R835G01	empile.	1.017
Strip	540R593G01	- 6-3-7	20,00
Strip	540R593G02	Well Mon-	-
T-Clamp Assy	623R821G02	ī	and the
AUXENCODER	640R846G06	- III	5014
Cir Card	640R825G06	Р	5016
Cir Card	640R844G06	υ	5016
T-CAL Source	623R920G01	C C	5014
HRD Elect	693R663G02	D	5003
FILT Assy	693R661G01	-	1
Cir Card	623R758G04	- 199 W	0013
Cir Card	623R506G05	AC	0013
SOL ASSY	758R620G03	N N	5007
Cable	758R693G01	D	-
T Channel	765R048G02	G	5007
Cir Card	762R539G02	K	5003
Mod Assy	623R727G01	С	5026
Mod Assy	623R727G01	С	5027
VDGA	644R150G06	М	5014
Cir Card	644R152G04	W	5014
	_		

DESCRIPTION	ASSEMBLY NO.	REV.	S/N
Cir Card	644R153G04	V	5014
Cir Card	644R127G06	■ AC	5014
Post Amp	644R220G06	_ R	5014
Cir Card	644R228G06	AW	5015
EST/LMD Assy	644R219G04	= E	5014
Cir Card	758R142G03	. M	0015
PMT Assy	644R909G06	- AA	5015
A1	644R903G04	AB	0015
A2	644R907G02	njuli. T	0016
A3	644R807G04	R	5015
A4	644R905G03	11 K	0015
A5	644R935G05	V V	5016
A7	536R916G01	■ F	5015
Tube A6	640R920G02	The J	024
Rel Assy	640R381G02	and the K	5014
R/M EST Assy	640R753G02	engra J	5014
Z-THERM	758R779G01	W III B	5014
H.V. Wire	540R582G02	В	- 15
Blanket	758R807G01	-	- 10
Frame	758R830G01	⊼ : • A	4- 49
Z-Therm	758R781G01	matter of B	5014
H.V. Wire	540R582G03	В	~
Frame	758R829G01	C	- 30
Blanket	758R808G01	-	-
RAD Housing	765R158G01	В	-
BLNKT Assy	522R276G02	J	-
Deployable	640R320G01	-	5014

DESCRIPTION	ASSEMBLY NO.	REV.	S/N
Pad Assy	640R332G01	N-11	10 40
Mirror Assy	536R188G01	A	5014
Mount DOU	540R565G01	B E -	2
Plate Assy	540R568G01	A	5014
Strip	540R569G01	В	HE POLICE
Insulator	758R985G01	ACC 19 1 1 1 1 1 1	200
ENC 1A14	688R705H01	E	017
RAD Cooler	9RA5216H02	M	031
TH BLKT Kit	661R660G01	A A	5014
GSSB	765R061G01	A	5014
GSSA	758R943G01	В	5014
<u>SPS</u>	775R150G03	AE	5014
WD	775R151G01	Н	-
BUS BAR	640R714G03	U	5015
BUS BAR	640R714G02	A - 444 = U	5015
MAT PL	712R003G02	W	134867-001
Cable J4	640R941G09	R	1000
Cable J5	640R941G04	R	-27
Cable J6	640R937G01	Н	- 11 79
Cable J15	640R941G03	R	-
Cable J19	640R930G04	K	10
Cable J20	640R930G02	K	ān i
Cable J21	640R941G05	R	

DESCRIPTION	ASSEMBLY NO.	REV.	S/N
Cable J22	640R941G01	> 1 = 1 R	••
Cable J23	640R943G03	L	-
Cable J24	640R942G04	N	- 11 511
Cable J25	640R930G01	m K	- =
Cable J26	640R941G06	_{II} R	• _[]
Cable J27	644R346G01	Н	. 1
Cable J30	640R944G02	J J	- 11 10
Cable J31	640R942G06	= N	-
COAX J7-14	640R913G01	₩ - T	-
R/B Assy	693R864G02	AB	5003
MOTH BRD	644R081G04	T	134911-001
Cable P4-34	644R235G01	na tana M	. =
Cable J2-3	644R236G01	_ K	-
Cable J4-P7	765R056G02	->0'1 E	- 11 1
2A1A1	765R626G02	name and B	5006
2A1A2	785R005G03	C	5008
2A1A3	693R808G02	ÿ js = ± F	5005
R/B Assy	644R665G07	AR	5026
MOTH BRD	644R081G01	T.	134911-003
Cable	644R235G01	HET ALL DOCUMENT	- 11 -
Cable	644R236G01	K	-
Cable	765R056G02	E	~
2A2A1	765R626G02	B	5005
2A2A2	785R005G03	C	5007
2A21A3	765R623G02	₂₄₆ E	5003
2A102	775R073G02	III L	5005
2A302	775R073G02	TUE L:	5006
	1	15	

DESCRIPTION	ASSEMBLY NO.	REV.	S/N
2A104	775R071G02	F	5005
2A304	775R071G02	F	5006
2A106	775R075G03	Н	5005
2A306	775R075G03	S III S A H	5006
2A107	775R055G03	Jo mary J	5006
2A307	775R055G03		5007
2A108	775R054G02	M	5006
2A308	775R054G02	M	5008
2A122	775R020G02	West Park	5005
2A322	775R020G02	THE PERSON NAMED IN	5006
2A123	775R021G02	C	5005
2A323	775R021G02	C	5006
2A124	775R022G02	C	5005
2A324	775R022G02	С	5006
2A125	775R008G03	G	5005
2A325	775R008G03	G	5006
2A127	775R014G03	AB	5005
2A327	775R014G03	AB	5007
2A128	775R023G02	В	5005
3A328	775R023G02	В	5006
2A129	775R024G03	F	5005
2A329	775R024G03	F	5006
2A130	775R025G02	С	5005
2A330	775R025G02	С	5006
2A131	775R026G02	D	5005
2A331	775R026G02	D D	5006
2A132	775R015G03	H H	5005

DESCRIPTION	ASSEMBLY NO.	REV.	S/N
2A332	775R015G03	— н	5006
2A133	775R016G03	J	5005
2A333	775R016G03	J	5006
2A134	775R027G02	₽ C	5005
2A334	775R027G02	С	5006
2A135	775R028G02	С	5005
2A335	775R028G02	С	5006
2A136	775R052G02	_ II G	5005
2A336	775R052G02	G	5006
2A137	775R053G03	J	5005
2A337	775R053G03	_ J	5006
2A138	775R009G02	В	5005
2A338	775R009G02	В	5006
2A201	775R029G02	В	5005
2A202	775R029G02	В	5006
2A203	775R001G02	_ N	5007
2A204	775R001G01	N	5006
2A205	775R017G03	J	5005
2A206	775R017G03	J	5006
2A207	775R002G02	L	5005
2A208	775R002G02	T L	5006
2A209	775R003G03	K	5003
2A210	775R003G03	_ K	5007
2A211	775R030G03	C	5005
2A212	775R030G03	- с	5006
2A213	775R034G02	F	5003
2A214	775R034G02	F	5008
	1 17		

DESCRIPTION	ASSEMBLY NO.	REV.	S/N
2A215	775R031G03	D	5005
2A216	775R031G03	D	5006
2A217	775R004G02	D	5005
2A218	775R004G02	D	5006
2A219	775R005G02	C C	5005
2A220	775R005G02	С	5006
2A221	775R006G02	В	5005
2A222	775R006G02	В	5007
2A223	775R010G03	E	5005
2A224	775R010G03	E E	5007
2A227	775R032G02	В	5005
2A232	775R032G02	1100 III B	5006
2A228	775R007G02	С	5008
2A233	775R007G02	С	5006
2A229	775R018G02	В	5005
2A234	775R018G02	В	5006
2A230	775R019G02	C C	5005
2A235	775R019G02	С	5006
2A231	775R033G02	D D	5005
2A236	775R033G02	D	5006
2A237	775R011G04	G	5005
2A240	775R011G04	G	5006
2A238	775R012G03	L	5009
2A241	775R012G03	٤	5006
2A239	775R013G03	М	5005
2A242	775R013G03	М	5006
<u>SPU</u>	775R140G03	N	5014
	11.1	10	

DESCRIPTION	ASSEMBLY NO.	REV.	<u> </u>
W/D	758R605G02	В —	
BUS BAR	640R912G01	N	5014
MOTH BRD	640R927G04	AD	1275460-001
Cable J1	640R942G05	N	_ 1
Cable J2	640R942G02	N	-
Cable J3	640R941G07	R	-
Cable J4	640R941G02	R	- "
Cable J5	640R942G03	N	-
Cable J6	640R937G01	Н	- 1
Cable J7	640R941G08	R	-
Cable J8	640R943G02	L	_ = =
Cable J9	640R943G01	L	- 111
3A103	775R042G02	D D	5005
3A203	775R042G02	D	5006
3A104	775R043G03	F	5005
3A204	775R043G03	F	5006
3A105	775R040G03	□ _F	5005
3A205	775R040G03	F	5006
3A106	775R041G02	В	5005
3A206	775R041G02	В	5006
3A107	775R035G02	G	5005
3A207	775R035G02	G	5006
3A108	775R044G03	D	5005
3A208	775R044G03	D	5006
3A109	775R036G02	D	5005
3A209	775R036G02	D	5006
3A110	775R037G02	D	5005
3A210	775R037G02	D	5006

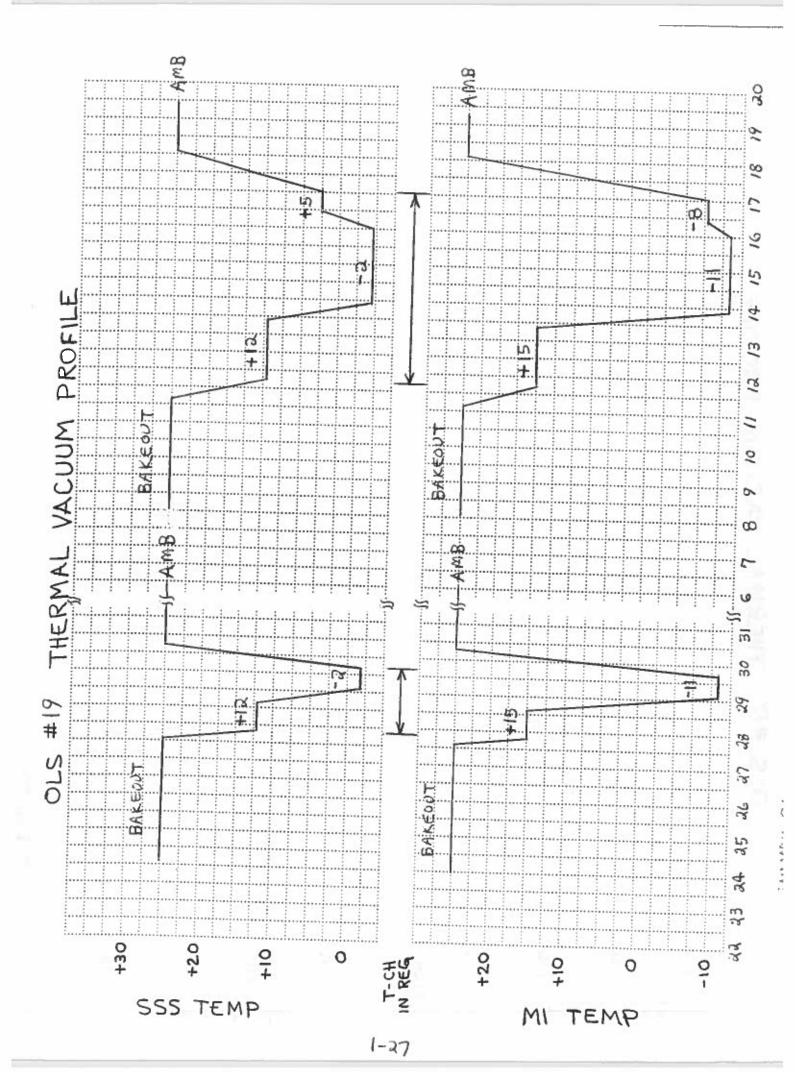
DESCRIPTION	ASSEMBLY NO.	REV.	S/N
3A111	775R045G04	D	5005
3A211	775R045G04	D	5006
3A112	775R046G02	С	5005
3A212	775R046G02	_ C	5006
3A113	775R047G02	≤ I C	5005
3A213	775R047G02	C	5006
3A114	775R038G02	n non-haf	5005
3A214	775R038G02	_{II} F	5006
3A116	775R039G02	3 III B	5005
3A216	775R039G02	В	5006
3A116	775R048G02	E	5005
3A216	775R048G02	E	5006
<u>osu</u>	693R770G02	<u> </u>	5014
MOTHER BRD	522R783G04	L	134809-001
Cable	644R134G01	. — М	- 1
Cable	644R134G02	M M	- 1
11A1	775R049G02	_F F	5003
11A2	775R050G02	G	5003
BOT Cover	644R047G04	AB	5014
Top Cover	693R778G02	, □ □E	5014
<u>PSU</u>	758R050G07	BF	5014
Wiring Doc	690R898G01	- v	-
MOTH BRD	765R397G01	А	128283-002
Matrix Plate	765R396G01	В	- 711
Cable J1	758R607G01	D	- 1 11
Cable J9	644R164G01	M	- 1
Cable J10	644R165G01	М	-
		1 00	

DESCRIPTION	ASSEMBLY NO.	REV.	S/N
Cable J12	644R166G01	M	_ 00
RFI	690R891G01	_ B	5012
REG COMP	682R089G03	T	5011
12A3	756R609G02	□ F	5015
12A101	781R982G03	D	5003
12A102	765R571G03	_ F	5014
12A103	765R575G02 🥭	F	5014
12A104	688R489G04	∥ K	5014
12A105	688R491G04	М	5026
12A106	688R491G04	M	5027
12A107	688R493G04	K	5026
12A108	688R493G04	. K	5027
12A109	640R998G05	N	5027
12A110	640R998G05	N	5028
12A112	688R481G05	M	5030
12A113	775R051G02	В	5014
12A114	688R481G05	M M	50231
12A115	644R864G04	J	5014
12A117	756R593G02	_ J	5007
12A201	682R381G04	F	5014
12A202	693R711G02	В	5014
12A203	644R078G04	Т	5014
12A2O4	688R502G04	Н	5014
12A205	688R499G04	- G	5027
12A206	688R499G04	G	5028
12A207	688R503G04	F	5014
12A208	644R069G04	W	5014
		0.1	

DESCRIPTION	ASSEMBLY NO.	REV.	S/N
12A209	688R505G04	IIC F	5014
12A210	688R504G04	≡ ∍ F	5013
12A211	688R500G04	F	5015
12A212	688R495G04	m m J	5028
12A213	688R495G04	J	5029
12A214	688R497G04	en see H	5014
Cable	9RA5255H06	AE	014
Cable	9RA5255H19	AE	002
Cable	9RA5255H20	AE	005
Cable	9RA5255H21	AE	003
Cable	9RA5255H22	AE	002
Cable	9RA5255H23	AE	007
Cable	9RA5255H24	AE	002
Cable	9RA5255H25	AE	002
Cable	9RA8118G01	ne Ibadin	-1
Cable Coax	644R327G01	Formation F	
Cable Coax	644R327G02	□	-
Cable Coax	644R327G03	F	
Cable Coax	644R327G05	F	- 1
Cable Coax	644R327G06	F	-
Cable Coax	644R328G01	D	-
Cable Coax	644R328G02	D	-
Cable Coax	644R328G03	D	. 1
Cable Coax	644R328G04	D	=.
Cable Coax	644R328G05	D	
Cable Coax	644R328G06	= D	-
Cable Coax	644R329G01	J	
Cable Coax	644R329G02	J	-

DESCRIPTION	ASSEMBLY NO.	REV.	<u>S/N</u>
Cable Coax	644R329G03	J	•
Cable Coax	644R329G06	J	-
Cable Coax	644R329G07	J ···	-
Cable Coax	644R329G08	J	-
Cable Coax	644R329G11	J	-
Cable Coax	644R329G12	J	-
Cable Coax	644R329G13	J	-

1.5 <u>Thermal Vacuum Profiles</u>


The OLS #19 AVE underwent a series of Thermal Vacuum Tests.

The profiles on the next pages represent the history of pumpdowns,

SSS temperature and M1 temperatures experienced by the OLS #19 AVE.

NOVEMBER 93

MARCH 94

1.6 <u>Test History Calendar</u>

The test history calendar is a capsule look at the day-to-day progress of the OLS #19 AVE throughout its testing period at WEC.

W					
DATE JULY 93	m	0	<u>Z</u>	8 2	31 MPA11PT 6x3x5 6x3x3 6x3x3 6x2x4 Funct lest
DAT	7	6	9/	23 Zegan System Testing	30 APCIIPT 625-1 622-1 623-1 623-1 MACIIPT Funct Tests
	3	<u>0</u>	5	22	29 APC 3 PT Funct Tests 4×7×1 6×6×2 4×12 4×4×1 AHSF3 PTI
HISTORY		7	4	21	Funct Tests Hecontered Hily Yriz Hrist Yriz Hrior 425x1
TEST		9	<u>E</u>	20	27 4-1-1 4-2×1 4-3×1
	=	<u>ত্</u> য	7/2	61	unet Tests
UNIT ors #19		4			25 Cabled up 26 System Align SSS \$ shot mirrurs
5					N CB

DATE AUG '93	Tape Recorder Testing 5/N 6970, 71 SDSBER	Software Check-out	N	58	
DAT	_ n	Config. Tests	20 Funct Tests 971,3 971,5	27	
	Supporting 6 Missica Sensor Testing	Config. Tests	19 Funct Tests 20 Funct 9-1/22 Config Tests 9-11	2-2 8 Y-Y axis 555 Uib	
HISTORY.	4 PRSTACK 9rlrl PFOT Funct Tests	Config. Tests	Config Tests Funct Tests	25 Y-Y & 2-2 26 axis SPS Uib 2-4 x-x axis ar- SSS Uib	
TEST	3 6×10 6×11×1 6×11×2 6×11×3 6×11×3	s Tests	Config Tests 9x1x4 Funct Tests	29x-x aris 5ps 0ie 3 axis Vie Pso, 5po, 050	31 6x2x1 Funct Tests 6x3x1 AHSF3PTT 6x4x3A
#19		2) Align 555 \$ shot mirrors	Config Tests	23	30
JNIT OLS #19	MAHSFBIIPT 6x6x1 6x6x3 funct Tests 6x7x2 6x8x2 6x8x2	SOFIBER SDFNIBER	Contig Tests	<u> </u>	· \

DATE SEPT 193	4				8/		স্থা			
DATE	Funct Tests 6x6x2	28	0				24 7/5 Scanner apset			
,	r 2 Find Tests	5011	9 MPAJPT Grzzy SCANLOOP		AHSFIIPT AHSF3PTI	20	23 7/s Scanner upset		30 T/s Scanner upset	
HISTORY	1 Funct Tests 2		AHSFB9PT		Config Tests		r T/s Scanner upset		ষ্ট	-
TEST		- K	7 9×1×1 9×1×4 AHSF7PT APC7PT		4	_	r 2117/5 Scanner upset		r checkout	
UNIT OLS#19	:		<u>a</u>	je sa	2×5 8×7 8×7		upset		1/5 Scanner 7/5 Scanner upset	
LINO			n		Z]		E	72	_ [~ .3	

DATEOCT 93 ENPA	Funct Tests 6x7x1 7x11 6x2x2 6x3x5 6x3x2 6x3x2 6x3x2 6x3x2 6x3x4	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Emet Tests 71257227A 2 9-1-2 23 9-1-1 7/5 5P5 7227A 7-6 9-1-3	SIMFLT 30 SIMFLT of Tests Pumpdown @1417
HISTORY.		13 LN2 18 CC 14 MPC7PT 15 4+8+1 6+5+1 7x7 4+13 6+7+1 6+3+5 AH5F 89PT Funct Tests 6+9 6+6+2 Funct Tests 6+9 6+6+2 Funct Tests 6+9 Funct Tests 6	26 9+1+6 21 SIMFLT 22 +12/+15@0600 Fund Tests T/5 TIZITZ318 To Cold Limit 6+10 9+1+4 9+1+3 9+1+3 13/-5@2020	SIMIFLT Funct Tests Funct Tests
TEST HIST	orthol 5 bored to Pal	12 Bake-out	19-4-11-3 0200 TIZITZ318 6×10 SIMFLT TO HOT SOAK	6+3+4 6+3+5 1HA7PT
JNIT OLS #19 311 Bake-out	Track problem missing in 1AVIS	- om L 3 4	12 Funct Tests 18 Grst. 1 ASV 270 Funct Tests TOCRM3A T/S Stle Publem APC7PT To Cold Sock MTC7PT (21800	Chamber 6x2x2 Valle 6x2x2

DATE NOV 93	Funct Tests TELEMITST	13 9-1+3 73-8@0600 AHSF3PTA AHCIIPT MHCIIPT MHCIIPT 6-2+34 6×2-2 Funct 7651- 772(723/0	6 2	27 ASV 310 TOCRM36 SFIGTZ T/S Pring Tests Venting	
DATE	5 PRCYCLE -2/-11 60700 6+2+2 712/723/8 5/MFLT.	12 Fund Tests TS Luap To Culd Limit @ 2130	19 6-11-1 6-11-2 6-11-3 6-11-4 Funct Tests T/S SRID-2	26 TSLOOP 9-1-1 7/197220B Funct Tests	
	TOCKM29 TOCKM29 MI to -5 01220 +7/-8 @ 1645 6-2-3A TIZITZ31E	10 Funct Tests 11 H2/+15@0435 12 Fund Tests To Hot Soak #2 T12172318 T5 Luop @.1845 SIMFLT TO Cold Limit Px/x6 @ 2130	MPAIIPT MTC. IIPT Funct Tests 9x/x1 6x6x2 6x6x2 6x6x2	725 SIMFLT 6×2×4 712572278 ASV 270 Funct Tests	
HISTORY.			16 Funct Tests 17 special CPH 18 MPAIIPT TIIGTZZOB Funct Test MTC. IIPT TOCKM3B T/S Loop Funct Test.	24 Funct Tests 25 6+11+3 6+11+4 MPA7PT MTC 7PT 6+3+3 6+2+5 Special Eneryptesty	
TEST F	2 Bake - out 7x7 Funt Tests +7/-8	9 PREYCLE -2/-11 @ 0415 Funct Tests T12172318 SIMFLT.		23 6-10 ATSTPT 6-6-1 6-6-2 6-6-3 ASV 210, 310 6+3-5 6-3-4 T123T2298	30 525 removed
1	Bake-out	10 Cold Soak \$2 70 Cold Soak \$2 (01830)		22 AHC7PT AHSFB9PT 6-2-3A APC7PT 6-2-3A Funct 70-3-1 T/2-172-18 MHC7PT	No System Tests
JNIT 015 #19		770 Hot Souky & Funct @ 0208 PRCYCLE TO COLD +12/+15/6/1000 6×2×2 T/2/T23/8 5/MFLT	14 As 5 310 AHS F 89 PT C+7-3 6-225 APC 11 PT T123 T2293 6x2xy 9-124 Funct Tests	21 Funt Tests To Hot Limits 20415 7248 97/22 77/12 @ 0930 AHSF3PTE	28 Chamber Open @ 1131 PSU removed

DATE DEC '93	3 AHSFIIPT 4 No 6x2rl PMT ASSY System removed	845 2765 BUS 2765 rework on SPS	18	52	No System Tests
	2 0+6+2 PMT 7/5 1/+5+1	No System Tests	91	53	8
HISTORY	System moved to Blue Rm.	No System Tests	5)	হ্য	50
TEST H	П	2 Config Tests	No System Tests	72	28
		No System Tests	reinstalled T/s kg Problem	2	27
UNIT OLS#19		No System Tests	BUS 2765	6)	276

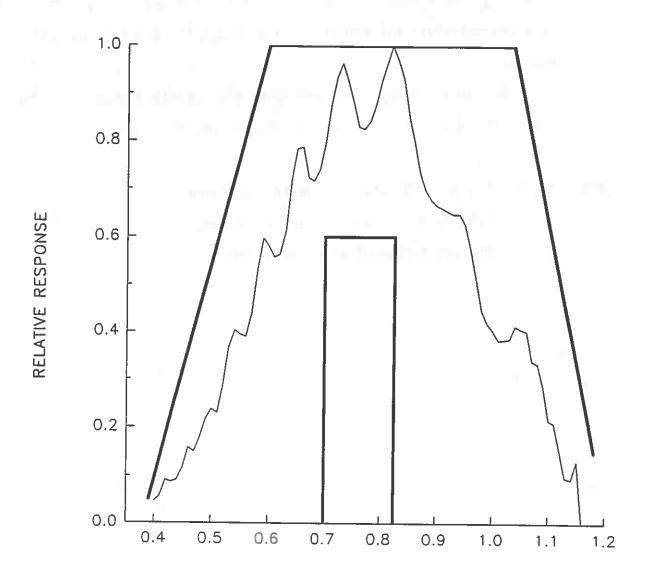
DATE JAN '94	No System Tests	<u></u>	15 Hot HI Cyale #2	ystem 6+3+4 6+3+4 6+3×1	28 MPA7PT 29-2/11 & 0130 6x6r1 6x6x2 NPC7PT 6x3x1 6x6r3 50F MPA7PT 6x6x1 Formatter & 6x6x7 6x6x1 Formatter & 6x6x7 6x6x1 712 (72318 712 (72318) 712 (72318 Fest Worm-up)
D/		7	Co 16 41	Moved System to TU Chamber	
i b		9	13 Hot Cycle #1	12 BUS 2764 29 MPAIIPT 6+2+1 6+3+2 6+3+1 6+6+1 6+6+2 6+6+3	27 LN2 to CC 727 62272 APC7PT
HISTORY		5	12 Hot Cycle #1	12 BUS 2764 6+2+1 6+3+1	26 Bake-out
TEST H		4	II Installed in Thermo Chamber	No System Tests	Bake-out
	Removed SDF3 board from SPS	<u></u>	No System Tests	30 3	24 6-2>2 6-3-1 APC 70T 6-6-1 6-6-3 7+13 Pump dean
ONIT OLS #19	Chamber Open	7	6	Cald Cycle #2	51M FLT 7×9

			1		
DATE FEB 194	4 BVS 2765 S Hot the Tests aycle #2 spy removed @ 1200 and installed in therm cham- by Cold Test	11 14 12 K (2) Funct Tests Funct Tests SIMFLT 6x2x2	SPS to thermo SDF T/s sof T/s	52	
· 	a sps to Therme Chamber for Tests	10 Bake-out	MHC7PT MHC7PT Erst Tests SOF T/S Warm - WP &	52	
HISTORY	ton No System Tests			MI Inspected	
TEST	removed for inspection	to Pumpdown	1987 PT Funct 1987 PT Fests 6x6x2 SDF Dusta 3 37.8	7	2 2
61#8			14 APC76 6+3-1 6+3-1 6-6-1 5/MF4 7/2/72	ו	chamber SIMFLT
UNIT OLS #19		545 # 56 Var 6 # 2 565 # 56 Var 6 Plus Rm	Funct Tests 16 Cold Soak -2/-11 (0 2345	50F 7/5	laris vib

AR , 84	Sceld Soak 5,1727 6,2,2 7/2/723/8				
DATE MAR '94	4 Funct Tests Sceld Soal SIMFLT 6+2+2 Trz 172318 6+2+2 To Cold Soak 712172318	মূ	61	77	
Ţ			<u>a</u>	সা	
	Bake - out Hot Soak Funt Test	0)	[7]	1 / ₂	m
HISTORY.	2 Bake -out	6	91	<u>82</u>	30
TEST H	Pump down	80	5/	2.2	<u>67</u>
		W. & C. of G.		NI	NI
61# 57		7	<u></u>	য	<u>8</u>
JNIT 025 #19		Warm-up g vent System to Blue Rm.	<u>E</u>	02	22

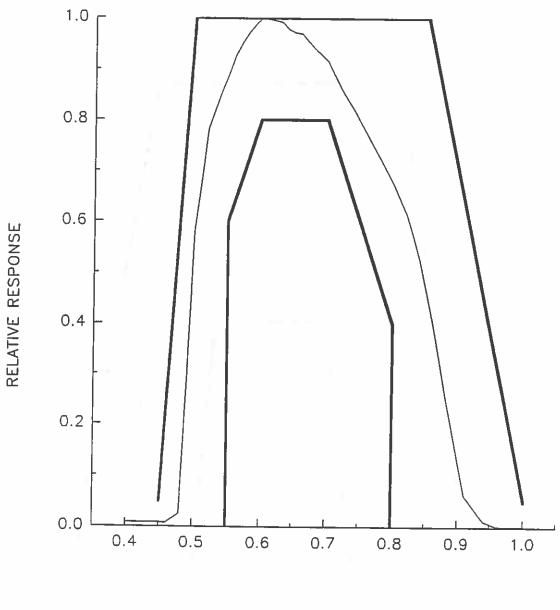
2.0 <u>DEVELOPMENT SPECIFICATION REQUIREMENTS</u>

2.1 Spectra (3.2.1.1.1.1, 3.1.1.1.2, 3.1.1.1.3)

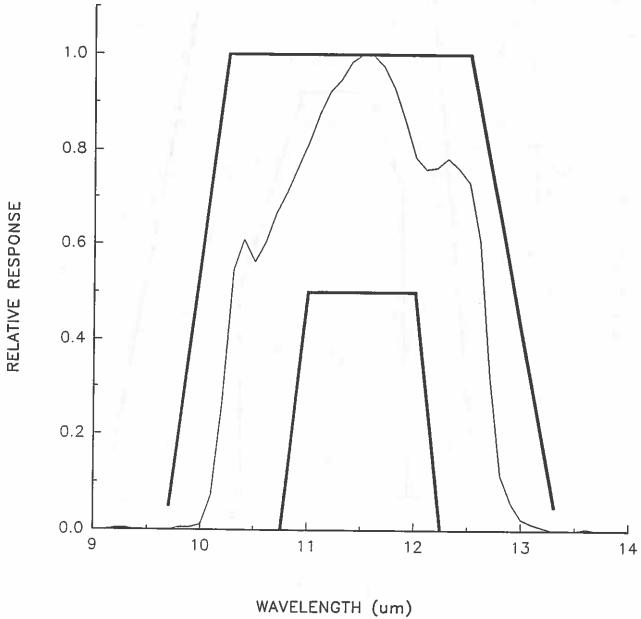

The OLS #19 Channel spectral responses are calculated by computer programs (GAINSET for L Channel and TGAIN for T channel) utilizing vendor spectral response data for the detectors, mirror and lens transmissivities/ reflectivities, and solar & lunar spectral radiance.

As calculated by these programs, the OLS #19 T channel, L Day and L Nite spectral responses are within specification.

ATTACHMENTS: OLS #19 HRD Channel Spectral Response.


OLS #19 PMT Channel Spectral Response.

OLS #19 T Channel Spectral Response.


WAVELENGTH (um)

OLS19 VISIBLE DAY SPECTRUM

WAVELENGTH (um)

OLS19 VISIBLE NIGHTTIME SPECTRUM

OLS19 T CHANNEL SPECTRUM

2.2 GEOMETRIC RESOLUTION

2.2.1 Fine Geometric Resolution - Infrared (3.2.1.1.2.1)

The TF Surface Resolution Parameter (SRP) is within the development specification limits.

The STS Computer programs calculate and plot the Fine Primary SRP, and the T Right & Left Fallback modes. In addition, all Specification required modes are tabulated and presented. The designations on the graphs are defined as follows:

TF T Fine Electronics

TS T Smooth Electronics

2.2.1.1 Baseline (Orbit Nominal)

 $\label{lem:environment} \mbox{ Effective with OLS18 the nominal environment is no longer part of OLS testing. }$

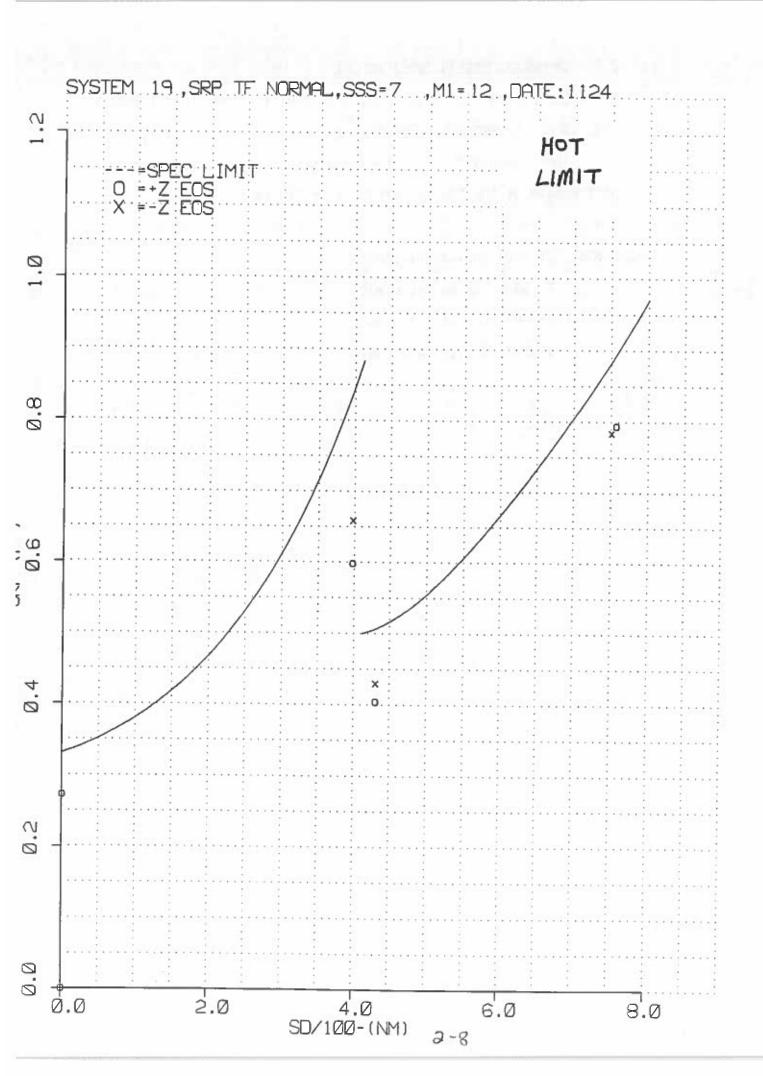
- 2.2 <u>Geometric Resolution</u> (Cont'd)
- 2.2.1 Fine Geometric Resolution, Infrared (Cont'd.) (3.2.1.1.2.1)

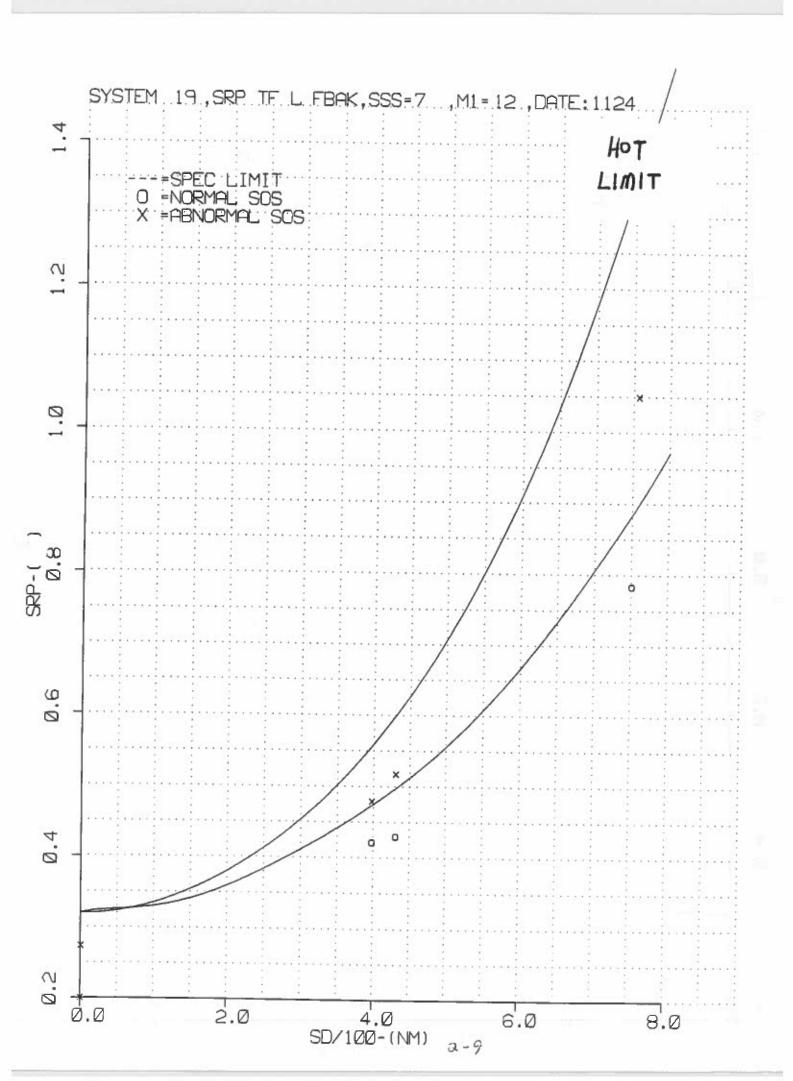
2.2.1.2 Acceptance - Vibration

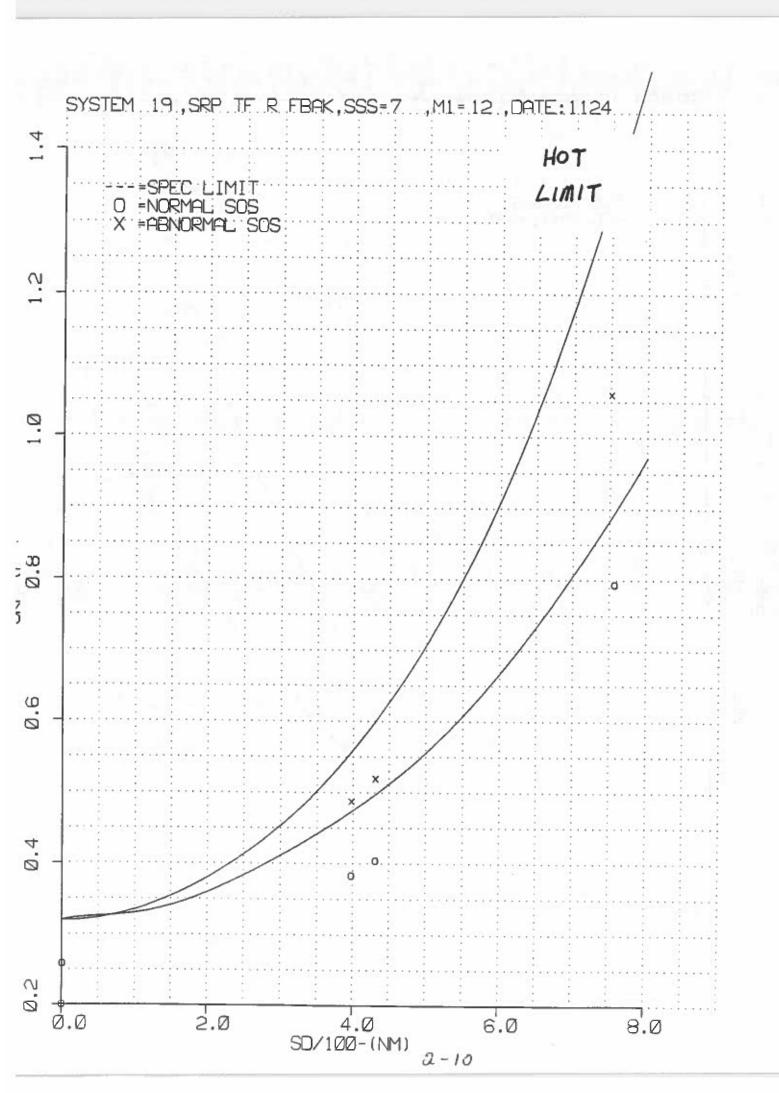
Effective with OLS 18 previbration testing is no longer done on the T channel. The T channel is accepted by similarity to OLS's 12 thru 17 contingent on all other alignment/synchronization and MTF data being in spec and typical of the performance of prior OLS units.

- 2.2 Geometric Resolution (Cont'd)
- 2.2.1 Fine Geometric Resolution, Infrared (Cont'd) (3.2.1.1.2.1)

2.2.1.3 Acceptance - Thermal Vacuum


The attached TF SRP curves and tables demonstrate in-spec performance at the thermal vacuum test limits.


ATTACHMENTS: TF SRP Curves Hot Limits


TF SRP Tables Hot Limits

TF SRP Curves Cold Limits

TF SRP Tables Cold Limits

T, COMPLETE, SRP (NM)

	FLT. NO. =	19 ENV. =	4 SSS=	7DEGC M1=	12DEGC DATE:	1124
SEG	SUR. DIST. (NM)	TFP	TFB	TSP	TSB	
LFT	−750 .	0. 783	0. 782	1. 748	1. 730	
MID	−750 .	1.281	0.000	1.849	1.832	
RGT	−750 .	1.060	1.059	1.788	1. 770	
LFT	0.	0.000	0.000	0.000	0.000	
MID	0.	0. 000	0.000	0.000	0.000	
RGT	0.	0.000	0.000	0.000	0.000	
LFT	-431.	0. 430	0. 431	1. 474	1. 457	
MID	-431.	0. 668	0.000	1. 506	1. 491	
RGT	-431.	0. 519	0. 521	1. 481	1. 465	
LFT	-398.	0. 421	0. 422	1.418	1.402	
MID	-378.	0. 658	0. 657	1. 442	1. 427	
RGT	-398.	0. 487	0. 489	1. 423	1. 408	
LFT	Ο.	0.000	0.000	0.000	0. 000	
MID	0.	0.000	0. 000	0.000	0. 000	
RGT	О.	0.000	0.000	0.000	0.000	
LFT	0.	0. 273	o. 274	0. 782	0. 972	
MID	٥.	0. 272	0. 273	0. 783	0. 972	
RGT	O.	0. 258	0. 258	0. 979	0. 968	
LFT	Ο.	0. 000	0.000	0.000	0. 000	10
MID	٥.	0.000	0.000	0. 000	0.000	
RGT	0.	0.000	0. 000	0.000	0.000	
LFT	398.	0. 479	0. 481	1. 415	1. 399	
MID	398 .	0. 598	0. 598	1. 429	1.414	
RGT	398.	0. 383	0. 383	1. 409	1. 393	
LFT	431.	0. 517	0. 519	1. 478	1.462	
MID	431.	0. 595	0.000	1.490	1. 475	
RGT	431.	0. 404	0. 404	1. 465	1.448	
LFT	o .	0. 000	0. 000	0.000	0.000	
MID	0.	0. 000	0. 000	0.000	0.000	
RGT	0.	0. 000	0. 000	0.000	0.000	
LFT	757.	1.049	1.048	1. 794	1.776	
MID	757 .	1. 564	0. 000	1. 960	1. 942	
RGT	757 .	0. 794	0. 793	1.737	1 719	

T, COMPLETE, SRP RATIO

SEG	SUR. DIST.	TFP	TFB	TSP	TSB
	(NM)				
LFT	−75 0.	0. 885	Q. 884	0. 777	0. 769
MID	-75G.	0.000	0. 000	0.822	0.815
RGT	-750.	0.791	0. 790	0. 795	0. 787
LFT	0.	0.000	0. 000	0. 000	0. 000
MID	o.	0.000	0. 000	0.000	0. 000
RGT	0.	0.000	0. 000	0. 000	0.000
LFT	-431.	0.864	0. 866	0. 920	0. 910
MID	-431.	0. 000	0. 000	0. 941	0. 931
RGT	-431.	0.866	0. 869	0. 925	0. 915
LFT	-398.	0. 890	0. 893	0. 924	0. 914
MID	-378.	0. 784	0. 783	0. 940	0. 931
RGT	-398.	0. 875	0. 879	0. 928	0. 918
LFT	0.	0.000	0.000	0. 000	0. 000
MID	0.	0.000	0.000	0. 000	0. 000
RGT	0.	0. 000	0. 000	0. 000	0.000
LFT	0.	0.854	0. 855	0. 936	0. 925
MID	0.	0.822	0. 823	0. 936	0. 926
RGT	0.	0. 807	0. 807	0. 932	0. 922
LFT	0.	0.000	0. 000	0.000	0.000
MID	0.	0.000	0. 000	0.000	0.000
RGT	Ο.	0.000	0.000	0. 000	0. 000
LFT	398.	0.860	0.863	0. 923	0. 912
MID	398.	0.713	0.713	0. 932	0. 922
RGT	398.	0. 809	0.810	0. 919	0. 909
LFT	431.	0.862	0. 865	0. 923	0. 913
MID	431.	0.000	0.000	0. 930	0. 921
RGT	431.	0.812	0.813	0. 915	0. 904
LFT	0.	0.000	0.000	0.000	0.000
MID	0.	0.000	0.000	0.000	0.000
RGT	0.	0.000	0.000	0.000	0.000
LFT	<i>7</i> 57.	0.771	0. 770	0. 794	0. 786
MID	75 7.	0.000	0.000	0.867	0. 859
RGT	757.	0.887	0.885	0.769	0. 761

TF, LEFT, PRIMARY

FLT. NO. = 19 ENV. = 4 SSS= 7DEGC M1= 12DEGC DATE: 1124

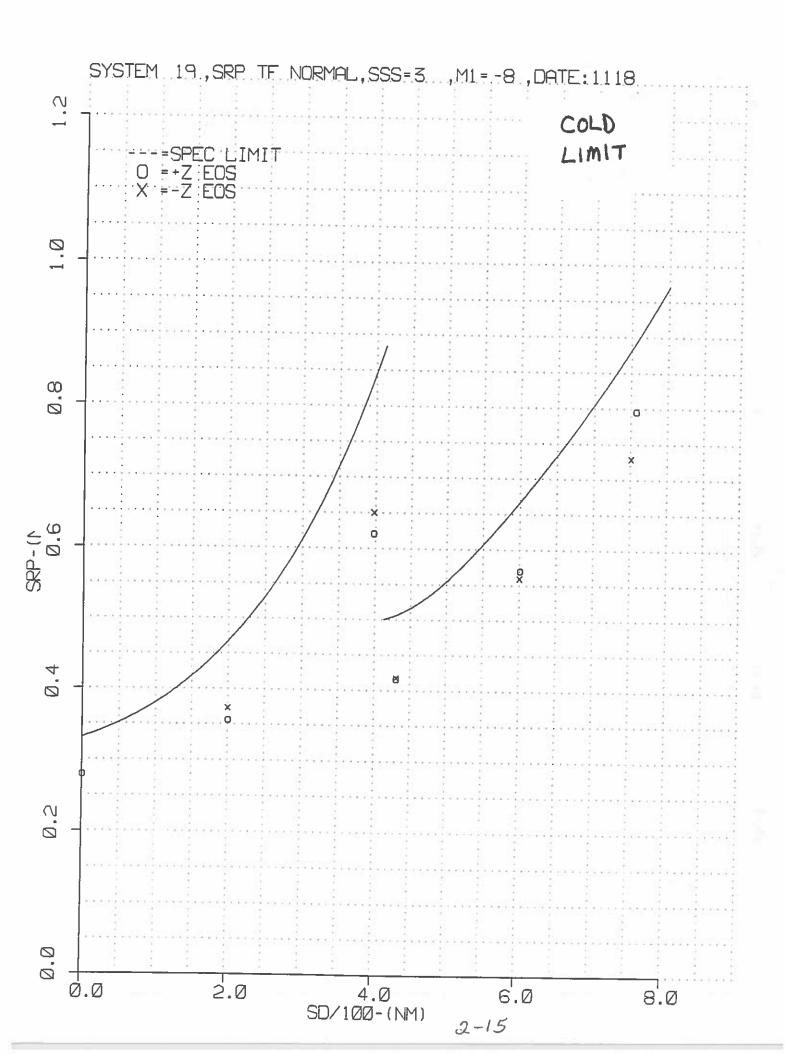
SUR. DIST. (NM)	SRP ACTUAL(NM)	SRP RATIO
−750 .	0. 783	0. 885
Ο.	0. 000	0. 000
-431.	0. 430	0.864
-398.	0. 421	0. 890
0.	0. 000	0. 000
Ο.	0. 273	0. 854
Ο.	0. 000	0. 000
398.	0. 479	0. 860
431.	0. 517	0. 862
Ο.	0. 000	0. 000
757 .	1.049	0. 771

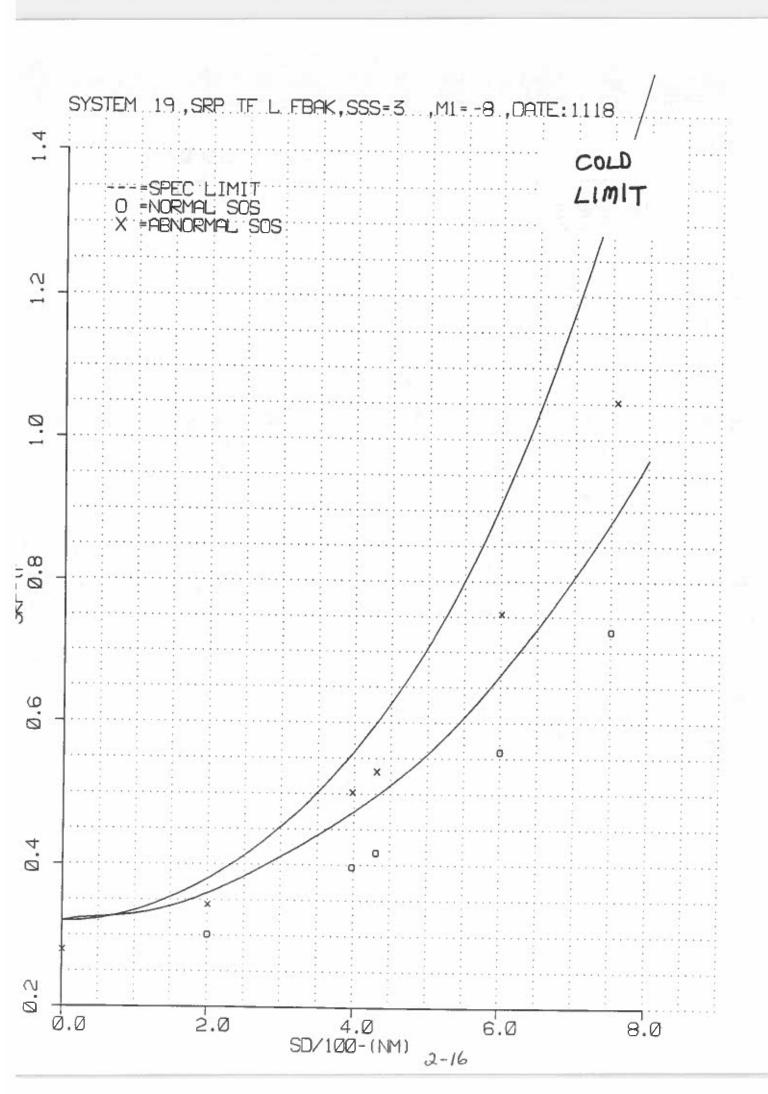
TF, LEFT, BACKUP

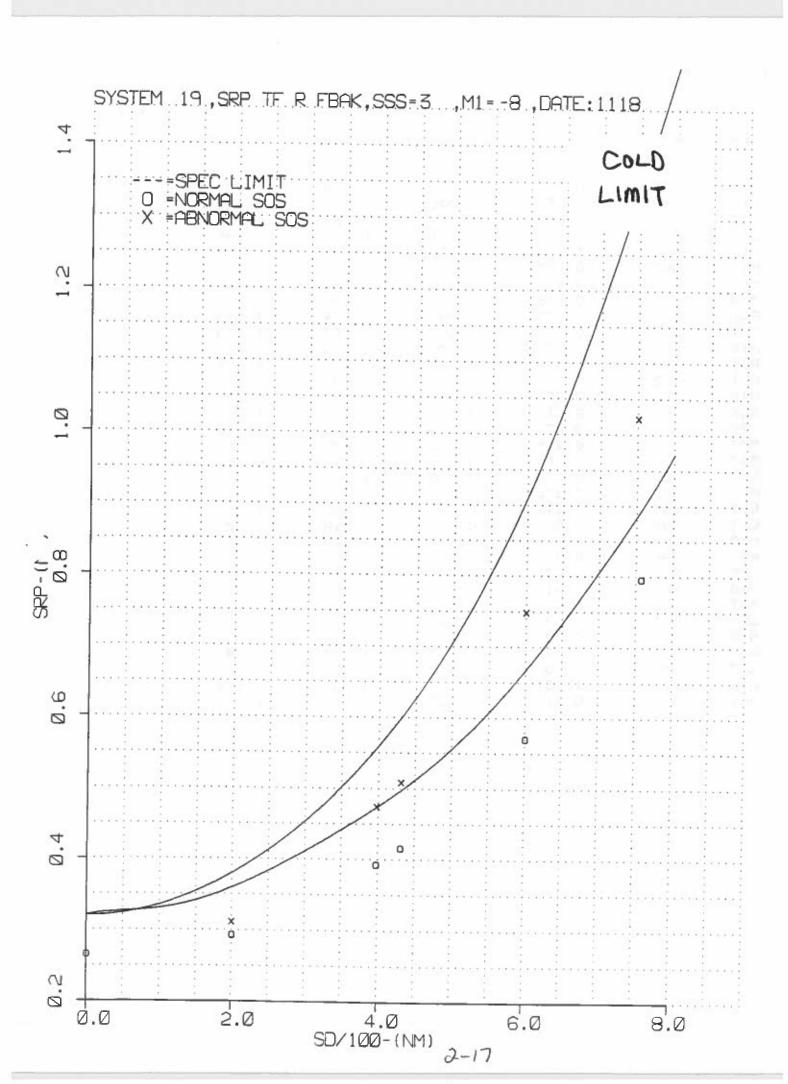
FLT. NO. = 19 ENV. = 4 SSS= 7DEGC M1= 12DEGC DATE: 1124

SUR. DIST. (NM)	SRP	ACTUAL (NM)	SRP RATIO
−75 0.		0. 782	0. 884
Ο.		0.000	0. 000
-431.		0. 431	0. 866
-378.		0. 422	0. 893
0.		0. 000	0. 000
0.		0. 274	0.855
Ο.		0. 000	0. 000
398.		0. 481	0. 863
431.		0. 519	0.845
0.		0. 000	0. 000
7 5 7.		1.048	0. 770

TF, RIGHT, PRIMARY


FLT. NO. = 19 ENV. = 4 SSS= 7DEGC M1= 12DEGC DATE: 1124


SUR DIST (NM)	GRP ACTUAL(NM)	SRP RATIO
-750.	1.060	0. 791
٥.	0. 000	0.000
-431.	0.519	0.844
-398.	0.487	0.875
0.	0. 000	0.000
Ο.	0. 258	O. B07
0.	0.000	0.000
378 .	0. 383	0.809
431.	0. 404	0.812
٥.	0.000	0, 000
757 .	0. 794	0.887


TF RIGHT, BACKUP

FLT. NO. = 19 ENV. = 4 SSS= 7DEGC M1= 12DEGC DATE: 1124

SUR. DIST. (NM)	SRP ACTUAL(NM)	SRP RATIO
-750.	1.059	0. 790
Ο.	0. 000	0.000
-431.	0. 521	0.869
-398.	0. 489	0.879
Ο.	0. 000	0.000
0.	0. 258	0.807
0.	0. 000	0.000
398.	0.383	0.810
431.	0. 404	0.813
O.:	0. 000	0. 000
<i>7</i> 57.	0. 793	0.885

T, COMPLETE, SRP (NM)

	FLT. NO. =	19 ENV. =	4 SSS=	3DEGC M1=	-BDEGC DATE:	1118
SEG	SUR. DIST. (NM)	TFP	TFB	TSP	TSB	
LFT	-750 .	0. 729	0. 720	1. 718	1. 707	
MID	−750 .	1:258	0. 000	1. 828	1. 817	
RGT	-750 .	1.022	1.017	1. 765	1. 754	
LFT	-600.	0.559	0. 551	1.707	1. 696	
MID	-600.	1.046	0.000	1.792	1. 781	
RGT	-600.	0.748	0. 739	1. 725	1.714	
LFT	-431.	0. 417	0.410	1. 460	1. 451	
MID	-431.	0. 656	0.000	1. 494	1. 485	
RGT	-431.	0.508	0. 501	1. 469	1. 459	
LFT	-398.	0. 397	0. 390	1. 407	1.398	
MID	-398.	0. 650	0. 642	1. 435	1. 426	
RGT	-398.	0. 474	0. 467	1. 410	1. 401	
LFT	-200.	0. 301	0. 296	1. 103	1. 095	
MID	-200.	0. 373	0.366	1. 109	1. 101	
RGT	-200.	0.311	0. 306	1.100	1. 093	
LFT	0.	0. 279	0. 275	0. 976	0. 970	
MID	0.	0. 278	0. 273	0. 975	0. 968	
RGT	0.	0. 265	0. 260	0. 973	0. 966	
LFT	200.	0. 343	0.338	1. 107	1. 099	
MID	200.	0. 356	0. 349	1.110	1. 103	
RGT	200.	0. 292	0. 288	1.103	1.096	
LFT	378.	0. 502	0. 494	1.412	1.402	
MID	398.	0. 620	0.612	1.429	1. 420	
RGT	378.	0. 392	0. 386	1.403	1. 394	
LFT	431.	0. 531	0. 523	1.470	1. 461	
MID	431.	0. 618	0.000	1.489	1. 479	
RGT	431.	0.416	0.409	1. 460	1. 450	
LFT	601.	0. 754	0. 745	1. 723	1.712	
MID	601.	0. 991	0. 000	1. 778	1. 766	
RGT	601.	0. 570	0. 562	1.705	1. 693	
LFT	757.	1.052	1. 047	1.784	1. 773	
MID	757.	1.587	0.000	1. 959	1. 945	
RGT	757.	0. 795	0. 787	1. 723	1.712	
	_					

T, COMPLETE, SRP RATIO

SEG	SUR. DIST. (NM)	TFP	TFB	TSP	TSB
LFT	-750 .	0. 824	0. 813	0. 764	0. 759
MID	-750.	0.000	0. 000	0. 813	0. 808
RGT	-750 .	0.762	0. 759	0. 785	0. 780
LFT	-600.	0. 839	0. 826	0.867	0.861
MID	-600 .	0.000	0.000	0. 910	0. 904
RGT	-600.	0. 823	0.812	0.876	0. 871
LFT	-431.	0. 839	0. 825	0. 912	0. 906
MID	-431.	0.000	0.000	0. 933	0. 927
RGT	-431 .	0. 848	0.835	0. 917	0. 911
LFT	-398.	0.838	0. 823	0. 918	0. 911
MID	-398.	0. 774	0. 765	0. 935	0. 929
RGT	-378 .	0. 851	0. 839	0. 91 <i>9</i>	0. 913
LFT	-200.	0. 838	0. 823	0. 720	0. 913
MID	-200 .	0. 799	0. 784	0. 924	0. 918
RGT	–200 .	0.819	0. 805	0. 917	0. 911
LFT	0.	0. 873	0. 858	0. 930	0. 923
MID RGT	0.	0. 841	0. 824	0. 928	0. 922
LFT	0. 200.	0. 827 0. 904	0.814	0. 927	0. 920
MID	200.	0. 761	0. 889	0. 923	0. 916
RGT	200.	0.813	0. 748 0. 800	0. 925	0. 919
LFT	398.	0. 901	0. 888	0. 920 0. 921	0. 913 0. 914
MID	398.	0. 740	0. 729	0. 932	0. 714
RGT	398.	0. 829	0. 815	0. 732	0. 909
LFT	431.	0. 885	0. 872	0. 918	0. 912
MID	431.	0. 000	0. 000	0. 930	0. 924
RGT	431.	0. 836	0. 822	0. 911	0. 905
LFT	601.	0. 827	0.817	0. 874	0. 869
MID	601.	0.000	0. 000	0. 902	0. 896
RGT	601.	0. 853	0. 842	0.865	0. 859
LFT	757 .	0. 773	0. 769	0. 789	0. 784
MID	<i>7</i> 57.	0. 000	0.000	0. 866	0.861
RGT	757.	0. 888	0. 879	0. 742	0. 757

TF, LEFT, PRIMARY

FLT. NO. = 19 ENV. = 4 SSS= 3DEGC M1= -8DEGC DATE: 1118

SUR. DIST.	(NM)	SRP	ACTUAL (NM)	SRP	RATIO
-750 .			0. 729	- O.	824
-600.			0. 559	0.	839
-431.			0. 417	0.	839
-398.			0. 397	0.	838
-200.			0. 301	٥.	838
O.			0. 279	0.	873
200.			0. 343	Q.	904
398.			0. 502	0.	901
431.			0. 531	0.	885
401.			0. 754	0.	827
757.			1. 052	0.	773

TF, LEFT, BACKUP

FLT. NO. = 19 ENV. = 4 SSS= 3DEGC M1= -8DEGC DATE: 1118

SUR. DIST. (NM)	SRP ACTUAL(NM)	SRP RATIO
-750 .	0. 720	0. 813
-600 .	0. 551	0. 826
-431.	0. 410	0. 825
-398 .	0. 390	0. 823
-200.	0. 296	0. 823
0.	0. 275	0. 858
200.	0. 338	0. 889
398.	0. 494	0. 888
431.	0. 523	0. 872
601.	0. 745	0.817
757 .	1. 047	0. 769

TF, RIGHT, PRIMARY

FLT. NO. = 19 ENV. = 4 SSS= 3DEGC M1= -8DEGC DATE: 1118

SUR. DIST. (NM)	SRP ACTUAL(NM)	SRP RATIO	
- 750.	1.022	0. 762	
-600.	0. 748	0. 823	
-431.	0. 508	0. 848	
-398.	0. 474	0. 851	
-200.	0. 311	0.819	
Ο.	0. 265	0. 827	
200.	0. 292	0. 813	
3 78 .	0. 372	0. 829	
431.	0. 416	0. 834	
601.	0. 570	0. 853	
757.	0. 795	0.888	

TF RIGHT, BACKUP

FLT. NO. = 19 ENV. = 4 SSS= 3DEGC M1= -8DEGC DATE: 1118

SUR. DIST. (NM)	SRP ACTUAL(NM)	SRP RATIO	
−750 .	1. 017	0. 759	
-600.	0. 739	0.812	
-431 .	0. 501	0. 835	
-378.	0. 467	0. 839	
-200.	0. 304	0. 805	
0.	0. 260	0.814	
200.	O. 288	0.800	
378 .	0. 386	0.815	
431.	0. 409	0. 822	
601.	0. 562	0.842	
757 .	0. 787	0. 879	

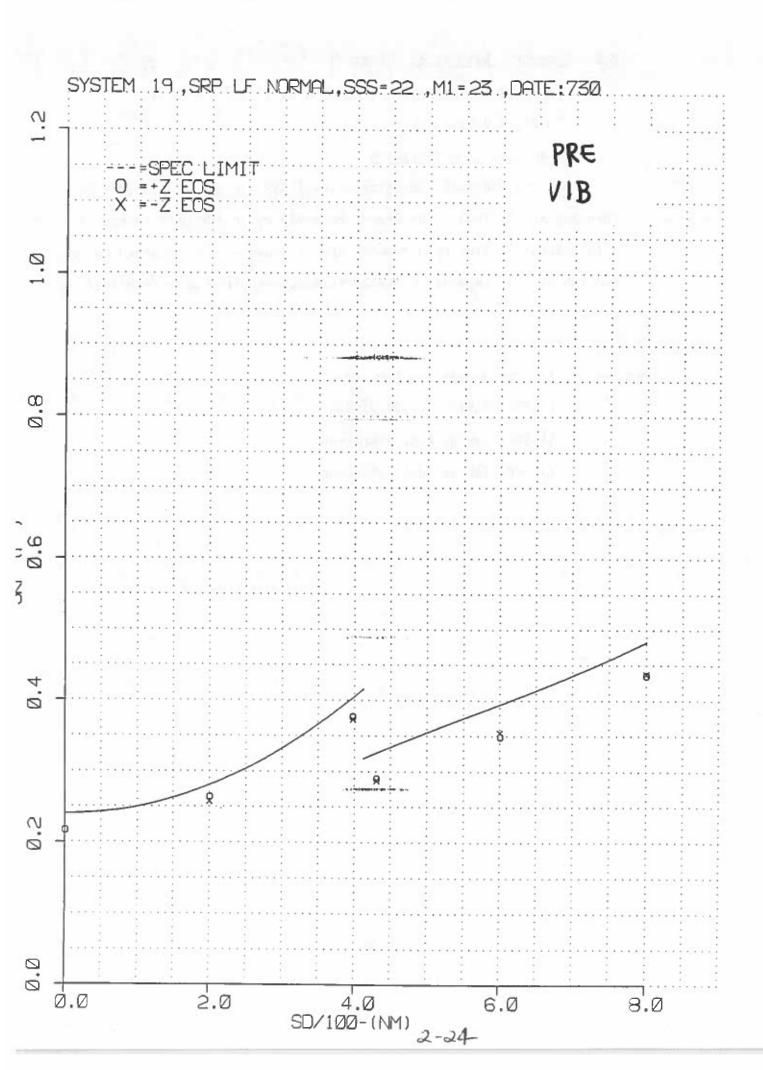
- 2.2 Geometric Resolution (Cont'd)
- 2.2.2 Fine Geometric Resolution Daytime Visual (3.2.1.1.2.1)
- 2.2.2.1 Baseline (Orbit Nominal)

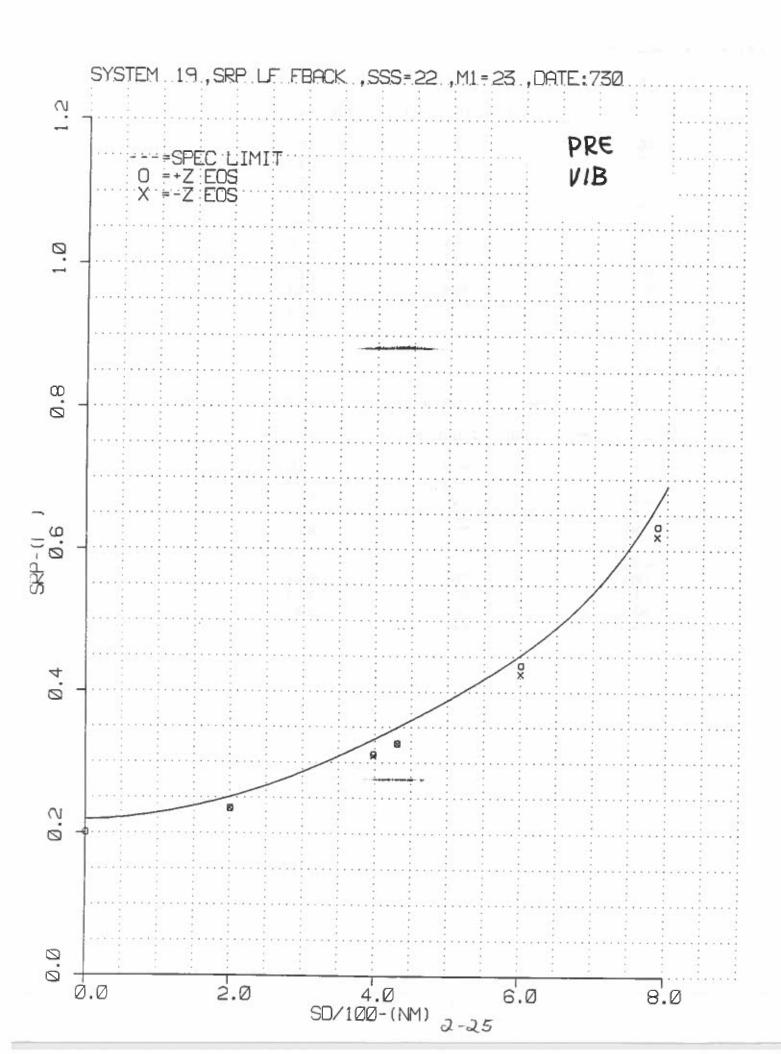
Effective with OLS 18 the nominal environment is no longer part of OLS testing.

2.2 <u>Geometric Resolution</u> (Cont'd)

2.2.2 <u>Fine Geometric Resolution - Daytime Visual</u> (Cont'd) (3.2.1.1.2.1)

2.2.2.2 Acceptance - Vibration


OLS #19 underwent Acceptance-level SSS vibration on August 24 thru August 26, 1993. The Pre-to-Post Vibration SRP performance is within Specification requirements and is shown on the attached curves and tables. No changes in SRP performance occurred as a result of vibration.


ATTACHMENTS: LF SRP Curves Pre-Vibration

LF SRP Tables Pre-Vibration

LF SRP Curves Post-Vibration

LF SRP Tables Post-Vibration

LF, DAY, NORMAL, PRIMARY

FLT. NO. = 19 ENV. = 2 SSS= 22DEGC M1= 23DEGC DATE: 730 SUR. DIST. (NM) SRP ACTUAL(NM) SRP RATIO -800. 0.437 0.905 0.899 0.355 -600. -431. 0.287 0.880 -398. 0.373 0.924 -200. 0.257 0.917 0.902 0. 0.216 200. 0.264 0. 941 378. 0.377 0. 934 431. 0.290 0.889 0.349 0.885 601.

0.901

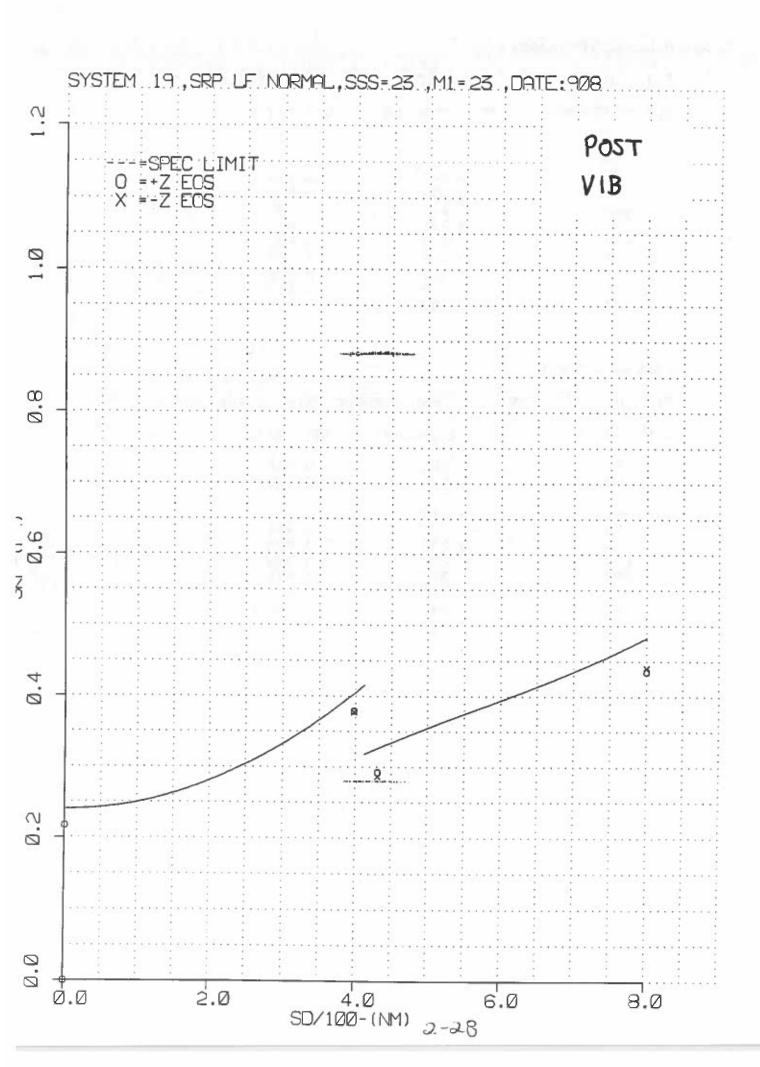
0.435

LF, DAY, NORMAL, BACKUP

800.

FLT. NO. = 19 ENV. = 730 2 SSS= 22DEGC M1= 23DEGC DATE: SUR. DIST. (NM) SRP ACTUAL(NM) SRP RATIO **-800**. 0.916 0.442 -600. 0.356 0.903 -431. 0.289 0.885 0. 933 -398. 0.377 -200. 0.259 0. 923 0. 0.217 0.906 200. 0.266 0.947 398. 0.380 0.943 431. 0.291 0.893 601. 0.351 0.888 800. 0.440 0.912

LF, DAY, FALLBACK, PRIMARY


FLT. NO. = 19 ENV. = 2 SSS= 22DEGC M1= 23DEGC DATE: 730

SUR. DIST. (NM)	SRP ACTUAL(NM)	SRP RATIO
-787.	0. 619	0. 932
-600.	0. 425	0. 941
-431.	0. 327	0. 934
-398.	0. 309	0. 930
-200.	0. 235	0. 937
0.	0. 201	0. 916
200.	0. 235	0. 935
398.	0. 311	0. 937
431.	0. 327	0. 935
401.	0. 438	0. 967
788.	0. 633	0. 951

LF, DAY, FALLBACK, BACKUP

FLT. NO. = 19 ENV. = 2 SSS= 22DEGC M1= 23DEGC DATE: 730

SUR. DIST. ((NM) SRP	ACTUAL (NM)	SRP F	RATIO
-787.		0. 423	0. 9	738
-600.		0. 430	0. 9	751
-431.		0. 328	0. 9	737
-398.		0. 311	0. 9	735
-200.		0. 236	0. 9	741
Ο.		0. 201	0. 9	720
200.		0. 235	0. 9	735
378.		0. 313	0. 9	742
431.		0. 329	0. 9	740
601.		0. 442	0. 9	778
788.		0. 637	Q. 5	757

LF, DAY, NORMAL, PRIMARY

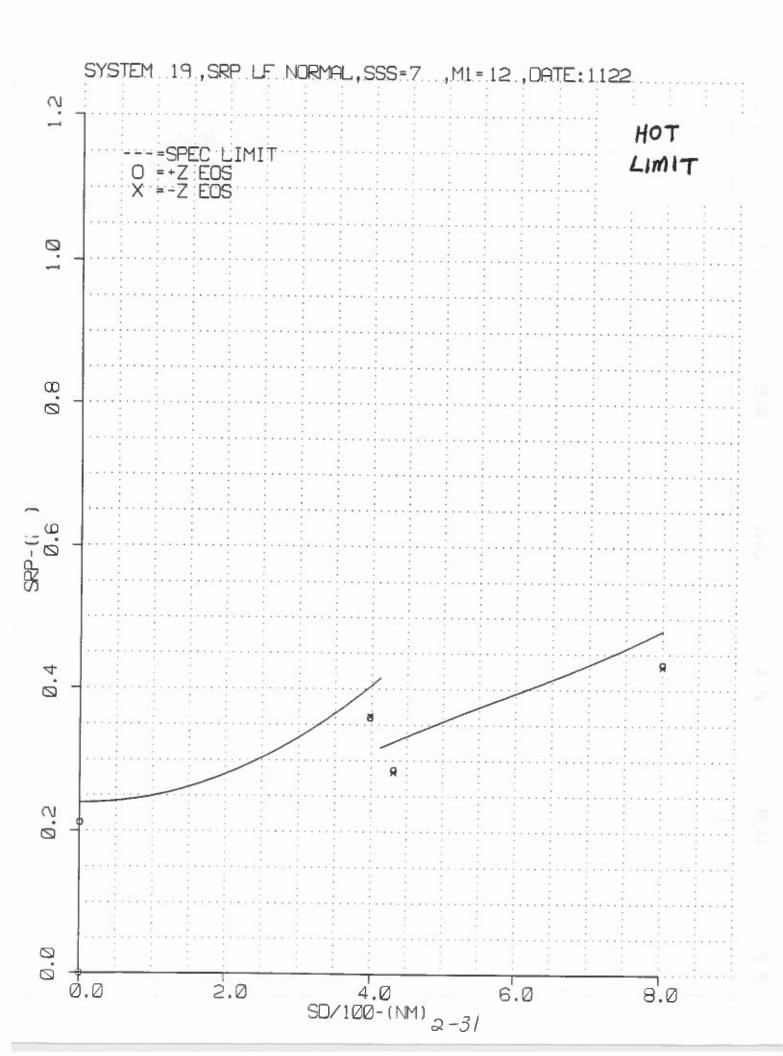
FLT. NO. = 19 ENV. = 2 SSS= 23DEGC M1= 23DEGC DATE: 908 SUR. DIST. (NM) SRP ACTUAL(NM) SRP RATIO **-800**. 0.440 0.911 0. 0.000 0.000 -431. 0. 286 0.878 -378. 0.378 0. 935 0. 0.000 0.000 O. 0.216 0.902 0. O. 000 0.000 398. 0. 379 0.939 431. 0. 272 0.895 O. 0.000 0.000 800. 0.436 0.902

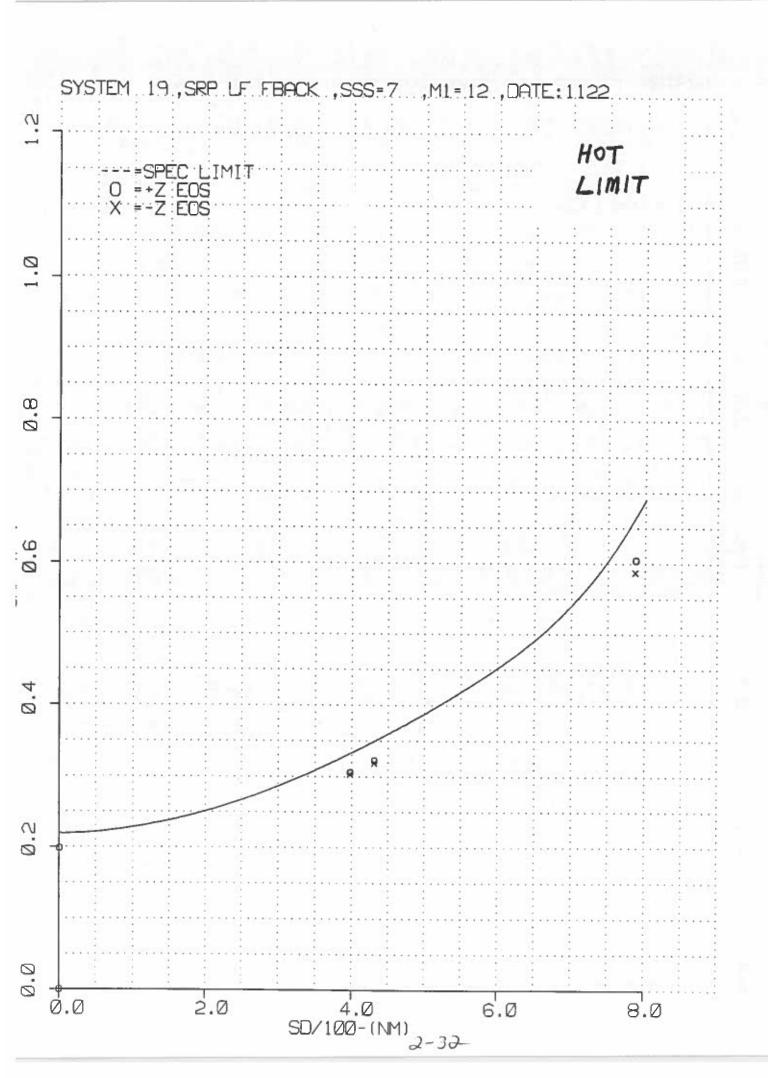
LF, DAY, NORMAL, BACKUP

FLT. NO. = 19 ENV. = 2 SSS= 23DEGC M1= 23DEGC DATE: 908 SUR. DIST. (NM) SRP ACTUAL(NM) SRP RATIO -800. 0.442 0.915 O. 0.000 0.000 -431. 0.297 0.880 -398. 0.379 0.938 0. 0.000 0.000 Ο. 0. 216 0. 902 ٥. 0.000 0.000 398. 0. 380 0. 941 431. 0. 293 0.897 O. 0.000 0.000 800. 0.437 0. 905

- 2.2 <u>Geometric Resolution</u> (Cont'd)
- 2.2.2 <u>Fine Geometric Resolution Daytime Visual</u> (Cont'd) (3.2.1.1.2.1)

2.2.2.3 Acceptance - Thermal Vacuum


OLS #19 LF SRP is within the specification limits in both Primary and Redundant configurations.


ATTACHMENTS: LF SRP Curve Hot Limit

LF SRP Tables Hot Limit

LF SRP Curves Cold Limit

LF SRP Tables Cold Limit

LF, DAY, NORMAL, PRIMARY

FLT. NO. = 19 ENV. = 4 SSS= 7DEGC M1= 12DEGC DATE: 1122

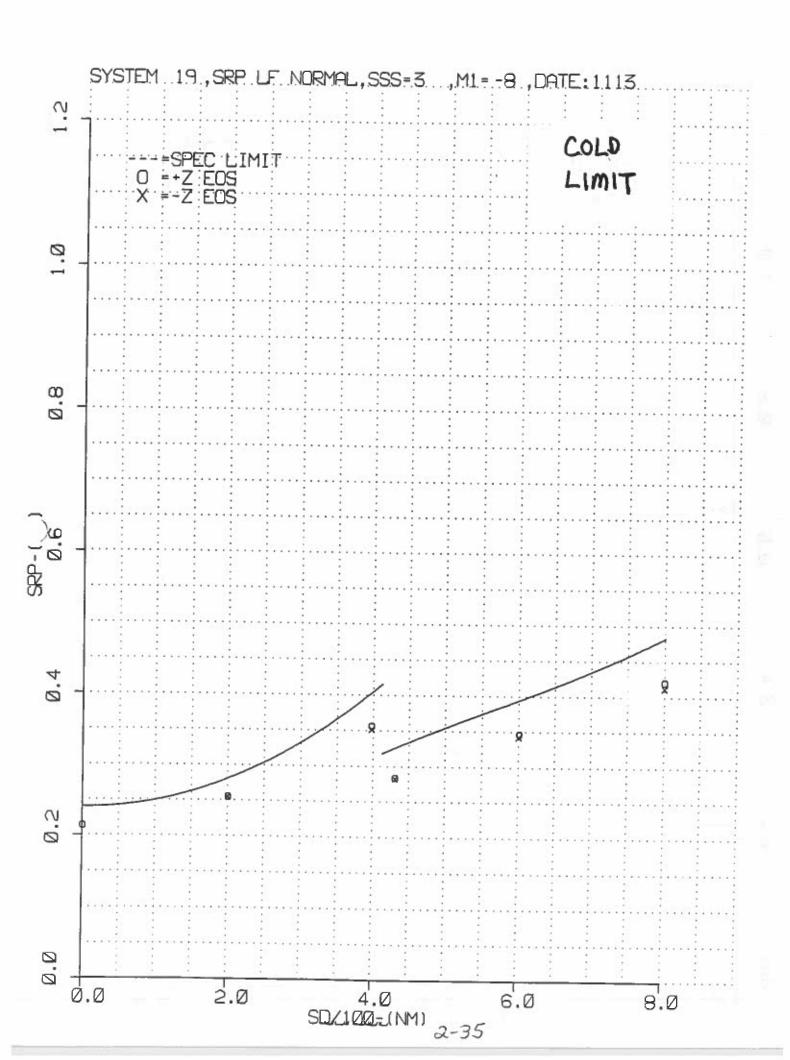
SUR. DIST. (NM)	SRP ACTUAL (NM)	SRP RATIO
-800.	0. 432	0. 894
Ο.	0. 000	0.000
-431.	0. 283	0.869
-398.	0. 362	0. 897
0.	0.000	0. 000
0.	0. 212	0.882
0.	0. 000	0.000
398.	0. 360	0. 892
<u> </u>	0. 286	0. 878
0.	0. 000	0. 000
800 .	0. 435	0. 901

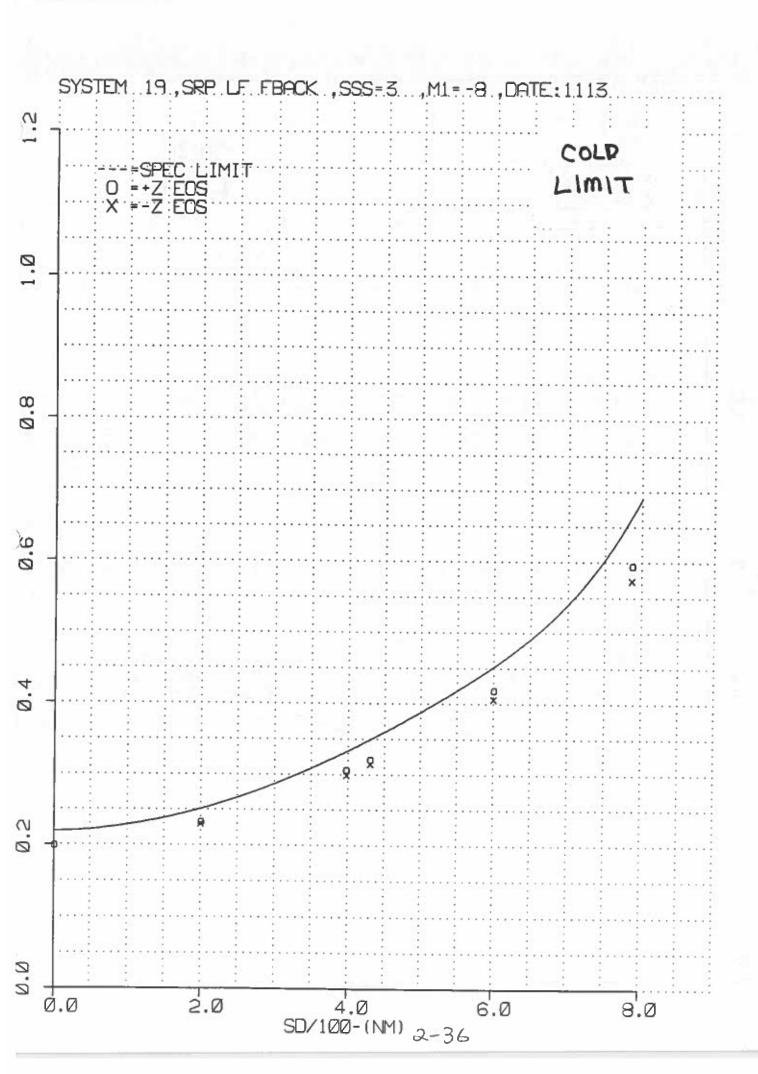
LF, DAY, NORMAL, BACKUP

FLT. NO. = 19 ENV. = 4 SSS= 7DEGC M1= 12DEGC DATE: 1122

SUR. DIST. (NM)	SRP ACTUAL(NM)	SRP RATIO
-800.	0. 431	0.894
Ο.	0.000	0.000
-431.	0. 283	0.849
-3 78.	0. 362	0, 897
0.	0. 000	0.000
Ο.	0. 211	0.881
Ο.	0.000	0.000
378.	0. 360	0.872
431.	0. 286	0.878
٥.	0. 000	0.000
800.	0. 435	0. 900

LF, DAY, FALLBACK, PRIMARY


FLT. NO. = 19 ENV. = 4 SSS= 7DEGC M1= 12DEGC DATE: 1122


SUR. DIST. (NM)	SRP ACTUAL(NM)	SRP RATIO
-787.	0. 588	0. 885
0.	0.000	0.000
-431.	0.319	0. 913
-398.	0.303	0. 912
0.	0. 000	0.000
0.	0. 198	0. 906
0.	0.000	0. 000
378.	0. 306	0. 920
431.	0. 322	0. 721
0.	0. 000	0. 000
788.	0. 605	0. 909

LF, DAY, FALLBACK, BACKUP

FLT. NO. = 19 ENV. = 4 SSS= 7DEGC M1= 12DEGC DATE: 1122

SUR. DIST. (NM)	SRP ACTUAL(N	M) SRP RATIO
-787.	0. 586	0. 882
0.	0. 000	0. 000
-431.	0. 319	0. 912
-398.	0. 303	0. 911
Ο.	0.000	0. 000
Ο.	0.198	0. 905
Ο.	0.000	0. 000
398.	0. 305	0. 919
431.	0. 322	0. 920
Ο.	0.000	0. 000
788.	0. 603	0. 904

LF, DAY, NORMAL, PRIMARY

FLT. NO. = 19 ENV. = 4 SSS= 3DEGC M1= -8DEGC DATE: 1113

SUR. DIST. (NM)	SRP ACTUAL(N	M) SRP RATIO
-800.	0. 412	0. 854
-600.	0. 343	0. 869
-431.	0. 283	0. 866
-378 .	0. 352	0. 871
-200.	0. 254	0. 907
0.	0. 213	0. 887
200.	0. 255	0. 90B
398.	0. 356	0. 884
431.	0. 284	0. 869
601.	0. 347	0. 878
800.	0. 421	0. 872

LF, DAY, NORMAL, BACKUP

FLT. NO. = 19 ENV. = 4 SSS= 3DEGC M1= -8DEGC DATE: 1113

SUR. DIST. (NM)	SRP	ACTUAL (NM)	SRP RATIO
-800.		0.412	0. 853
-600.		0. 343	0.869
-431.		0. 283	0.1867
-398.		0. 351	0. 870
-200.		0. 254	0. 906
Ο.		0. 213	0. 888
200.		0. 254	0. 907
378.		0. 356	0. 883
431.		0. 284	0.870
601.		0. 347	0. 878
800.		0. 420	0. 871

LF, DAY, FALLBACK, PRIMARY

FLT. NO. = 19 ENV. = 4 SSS= 3DEGC M1= -8DEGC DATE: 1113

SUR. DIST. (NM)	SRP ACTUAL (NM)	SRP RATIO	
-787 .	0. 574	0. 864	
-600.	0. 406	0. 899	
-431.	0. 315	0. 900	
-398.	0. 298	0. 897	
-200.	0. 230	0. 916	
Ο.	0. 199	0. 907	
200.	0. 232	0. 924	
398.	0. 304	0. 921	
431.	0. 321	0. 917	
601.	0. 418	0. 925	
788.	0. 595	0.893	

LF, DAY, FALLBACK, BACKUP

FLT. NO. = 19 ENV. = 4 SSS= 3DEGC M1= -8DEGC DATE: 1113

SUR. DIST. (NM)	SRP ACTUAL(NM)	SRP RATIO	
-787.	0. 572	0. 862	
-600 .	0. 405	0. 897	
-431.	0. 314	0. 878	
-398.	0. 298	0. 897	
-200.	0. 229	0. 915	
0.	0. 199	0. 907	
200.	0. 232	0. 924	
398.	0. 306	0. 920	
431.	0. 320	0. 916	
601.	0.418	0. 924	
788.	0. 593	0.891	

- 2.2 <u>Geometric Resolution</u> (Cont'd)
- 2.2.3 <u>Smoothed Geometric Resolution Infrared</u> (3.2.1.1.2.2)
- 2.2.3.1 Baseline (Orbit Nominal)

Effective with OLS 18 the nominal environment is no longer part of OLS testing.

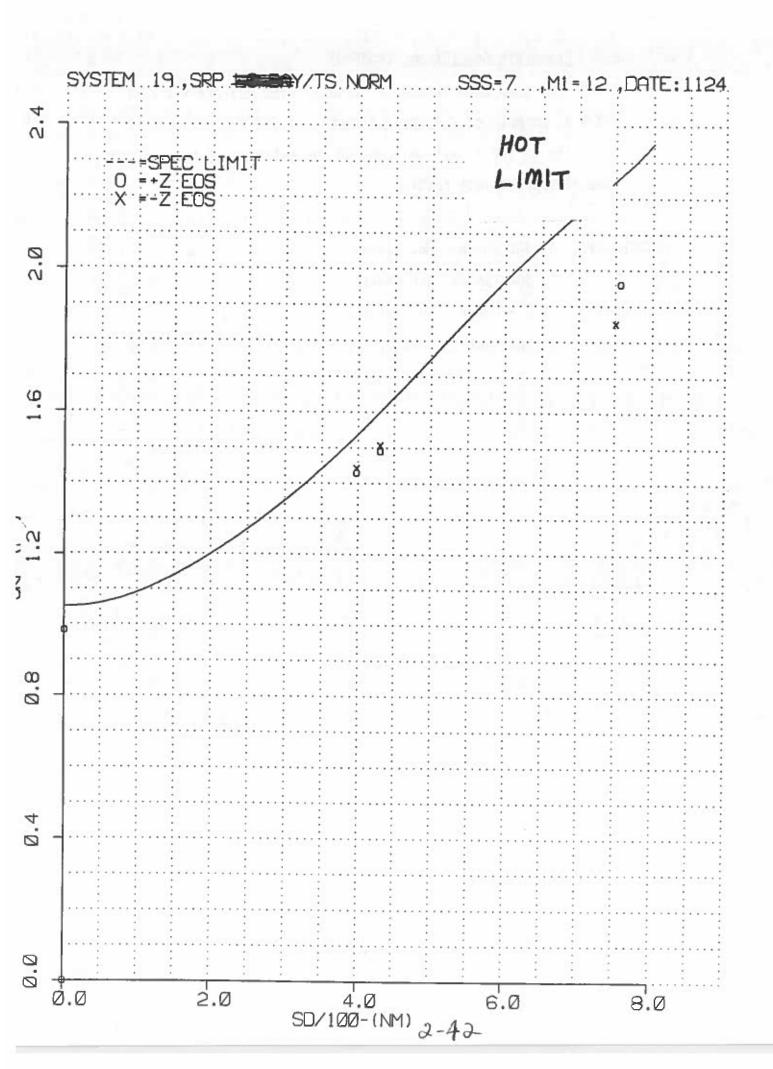
- 2.2 Geometric Resolution (Cont'd)
- 2.2.3 <u>Smoothed Geometric Resolution Infrared</u> (Cont'd) (3.2.1.1.2.2)

2.2.3.2 Acceptance - Vibration

Effective with OLS 18 previbration testing is no longer done on the T channel. The T channel is accepted by similarity to OLS's 12 thru 17 contingent on all other alignment/synchronization and MTF data being in spec and typical of the performance of prior OLS units.

- 2.2 <u>Geometric Resolution</u> (Cont'd)
- 2.2.3 Smoothed Geometric Resolution Infrared (3.2.1.1.2.2)

2.2.3.3 Acceptance - Thermal Vacuum


The TS SRP is within spec for the extremes of hot and cold Thermal Vacuum limit testing.

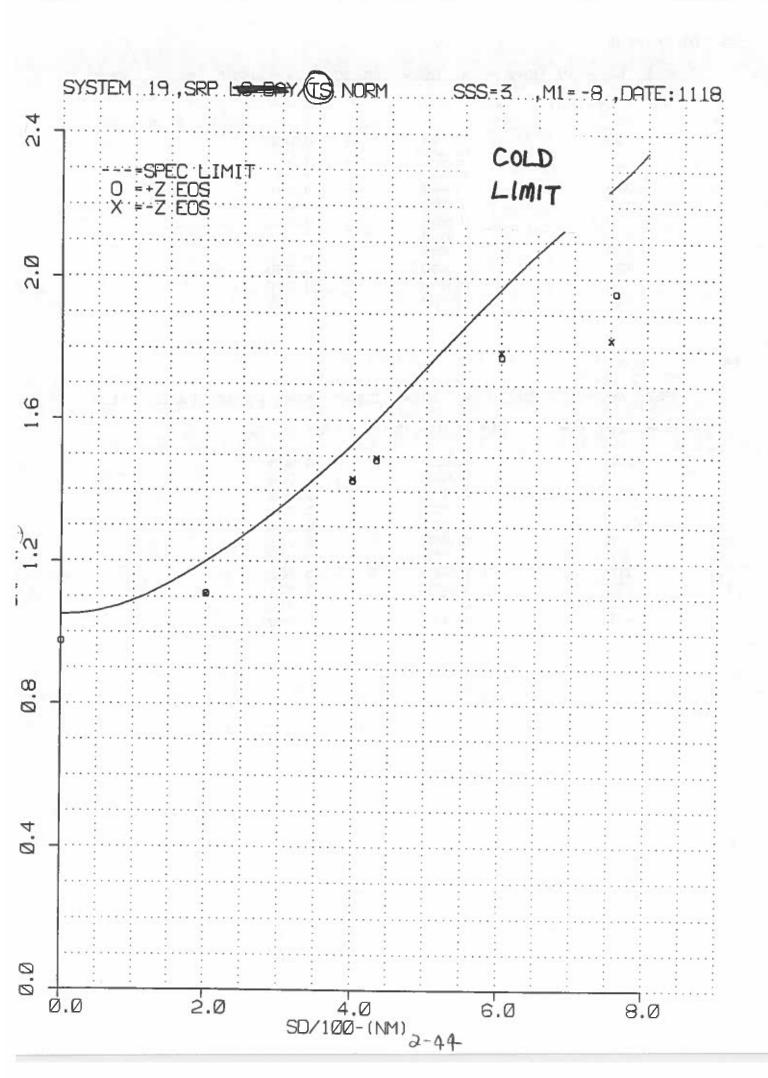
ATTACHMENTS: TS SRP Curve Hot Limits

TS SRP Tables Hot Limits

TS SRP Curve Cold Limits

TS SRP Tables Cold Limits

TS, MID, PRIMARY


FLT. NO. = 19 ENV. = 4 SSS= 7DEGC M1= 12DEGC DATE: 1124

SUR. DIST. (NM)	SRP	ACTUAL (NM)	SRP	RATIO
−750 .		1. 849	0.	822
0.		0. 000	0.	000
-431.		1. 506	0.	941
-398.		1. 442	0.	940
0.		0. 000	0.	000
0.		0. 983	٥.	936
O.		0. 000	O.	000
378.		1. 429	0.	932
431.		1. 490	0.	930
O.		0. 000	0.	000
757.		1. 960	О.	867

TS, MID, BACKUP

FLT. NO. = 19 ENV. = 4 SSS= 7DEGC M1= 12DEGC DATE: 1124

SUR. DIST. (NM)	SRP ACTUAL (NM)	SRP RATIO
-750 .	1.832	0. 815
Ο.	0. 000	0. 000
-431.	1. 491	0. 931
-398.	1. 427	0. 931
O.	0. 000	0.000
٥.	0. 972	0. 926
O.	0. 000	0. 000
378.	1. 414	0. 922
431.	1. 475	0. 921
Ο.	0. 000	0. 000
757 .	1. 742	0. 859

TS, MID, PRIMARY

FLT. NO. = 19 ENV. = 4 SSS= 3DEGC M1= -8DEGC DATE: 1118

SUR. DIST. (NM)	SRP ACTUAL(NM)	SRP RATIO
−750 .	1.828	0. 813
-600.	1. 792	0.910
-431.	1. 494	0. 933
-398.	1. 435	0. 935
-200.	1. 109	0. 924
0.	0. 975	0. 928
200.	1. 110	0. 925
398.	1. 429	0. 932
431.	1. 487	0. 930
601.	1. 778	0. 902
757.	1. 959	0.866

TS, MID, BACKUP

FLT. NO. = 19 ENV. = 4 SSS= 3DEGC M1= -8DEGC DATE: 1118

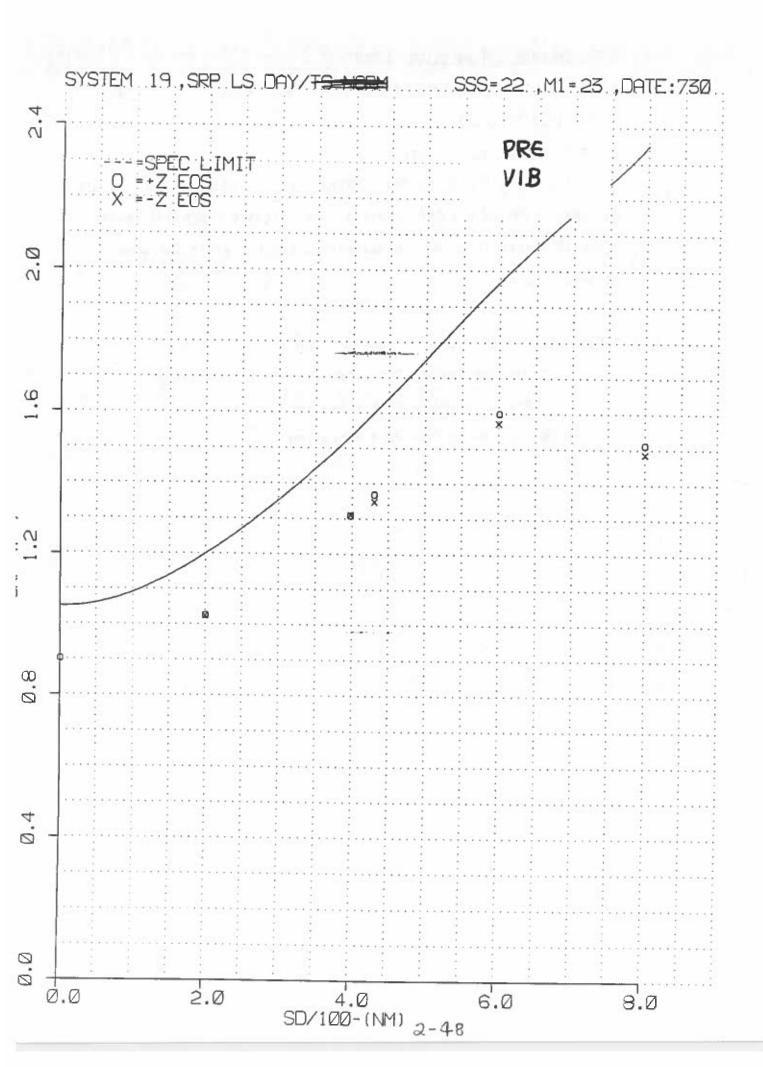
SUR. DIST. (NM)	SRP ACTUAL(NM)	SRP RATIO
- 750.	1. 817	0. 808
-600.	1. 781	0. 904
-431 .	1. 485	0. 927
~ 398.	1. 426	0. 929
-200.	1. 101	0. 718
0.	0. 968	0. 722
200.	1. 103	0. 919
398.	1. 420	0. 924
431.	1. 47 9	0. 924
601.	1. 766	0. 896
757 .	1. 945	0. 861

- 2.2 Geometric Resolution (Cont'd)
- 2.2.4 Smoothed Geometric Resolution Daytime Visual (3.2.1.1.2.2)
- 2.2.4.1 Baseline (Orbit Nominal)

Effective with OLS 18 the nominal environment is no longer part of OLS testing.

- 2.2 <u>Geometric Resolution</u> (Cont'd)
- 2.2.4 <u>Smoothed Geometric Resolution Daytime Visual</u> (Cont'd) (3.2.1.1.2.2)

2.2.4.2 Acceptance - Vibration

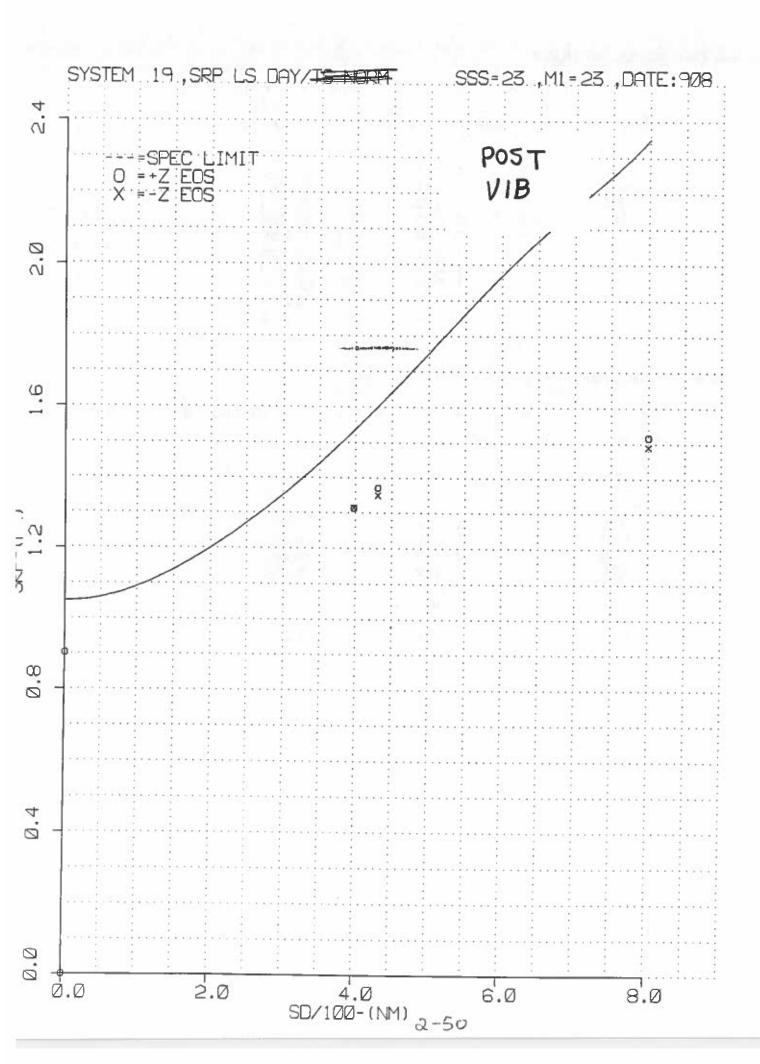

The OLS #19 SSS underwent vibrations on August 24 thru August 26, 1993. The LS Day SRP is within specification both before and after SSS vibration. No vibration-related changes in SRP were observed.

ATTACHMENTS: LS Day SRP Curve Pre-Vibration

LS Day SRP Tables Pre-Vibration

LS Day SRP Curve Post-Vibration

LS Day SRP Table Post-Vibration



LS, DAY, NORMAL, PRIMARY

FLT. NO. = 19 ENV. = 2 SSS= 22DEGC M1= 23DEGC DATE: 730 SUR. DIST. (NM) SRP ACTUAL (NM) SRP RATIO **-800.** 1.485 0. 632 -600. 1. 571 0.798 -431. 1.347 0.842 -398. 1.310 0.854 -200. 1.024 0.854 0. 0.902 0.859 1.025 200. 0.854 398. 1.309 0.853 431. 1.368 0.854 601. 1. 599 0.812 800. 1. 512 0. 643

LS, DAY, NORMAL, BACKUP

FLT. NO. = 19 ENV. = 2 SSS= 22DEGC M1= 23DEGC DATE: 730 SUR. DIST. (NM) SRP ACTUAL(NM) SRP RATIO -800. 1.481 0. 630 -600. 1.567 0.796 -431. 1.344 0.839 1.307 -398. 0.852 -200. 1.021 0.851 0. 0.899 0.857 200. 1.022 0.852 398. 1.305 0.851 431. 1.364 0.852 601. 1.595 0.809 800. 1.508 0.641

LS, DAY, NORMAL, PRIMARY

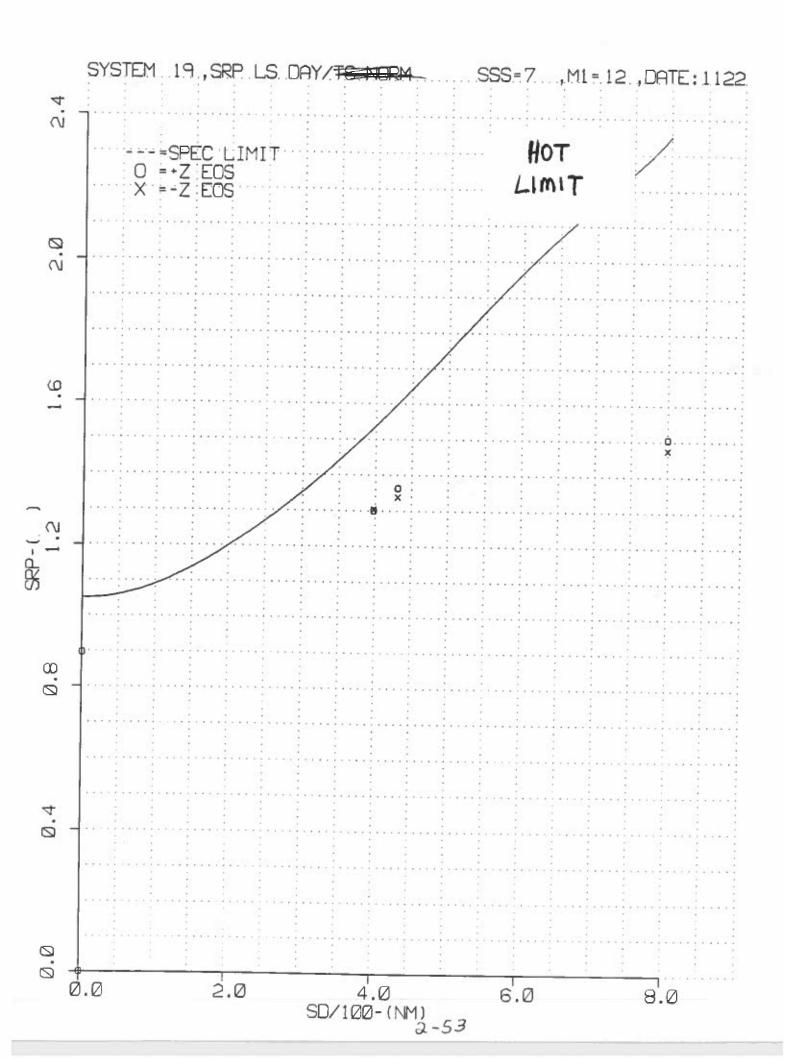
FLT. ND. = 19 ENV. = 2 SSS= 23DEGC M1= 23DEGC DATE: 908 SUR. DIST. (NM) SRP ACTUAL(NM) SRP RATIO -800. 1.490 0. 634 0.000 O. 0.000 -431. 1.350 0.843 -398. 1.314 0.857 ٥. 0.000 0.000 0. 0. 902 0.859 0. 0.000 0.000 398. 1.312 0.856 431. 1.371 0.856 0.000 Ο. 0.000 800. 1.516 0. 645

LS, DAY, NORMAL, BACKUP

FLT. NO. = 19 ENV. = 2 SSS= 23DEGC M1= 23DEGC DATE: 908 SUR. DIST. (NM) SRP ACTUAL(NM) SRP RATIO -800. 1.485 0. 632 0. 0.000 0.000 -431. 1.346 0.841 -398.1.311 0.854 Ō. 0.000 0.000 0. 0. 900 0.857 0. 0.000 0.000 378. 1.309 0.853 431. 1.366 0, 853 0. 0.000 0.000 800. 1.511 0.643

- 2.2 <u>Geometric Resolution</u> (Cont'd)
- 2.2.4 <u>Smoothed Geometric Resolution Daytime Visual</u> (Cont'd) (3.2.1.1.2.2)

2.2.4.3 Acceptance - Thermal Vacuum


The LS Day SRP is within specification allowance over the entire range of temperatures.

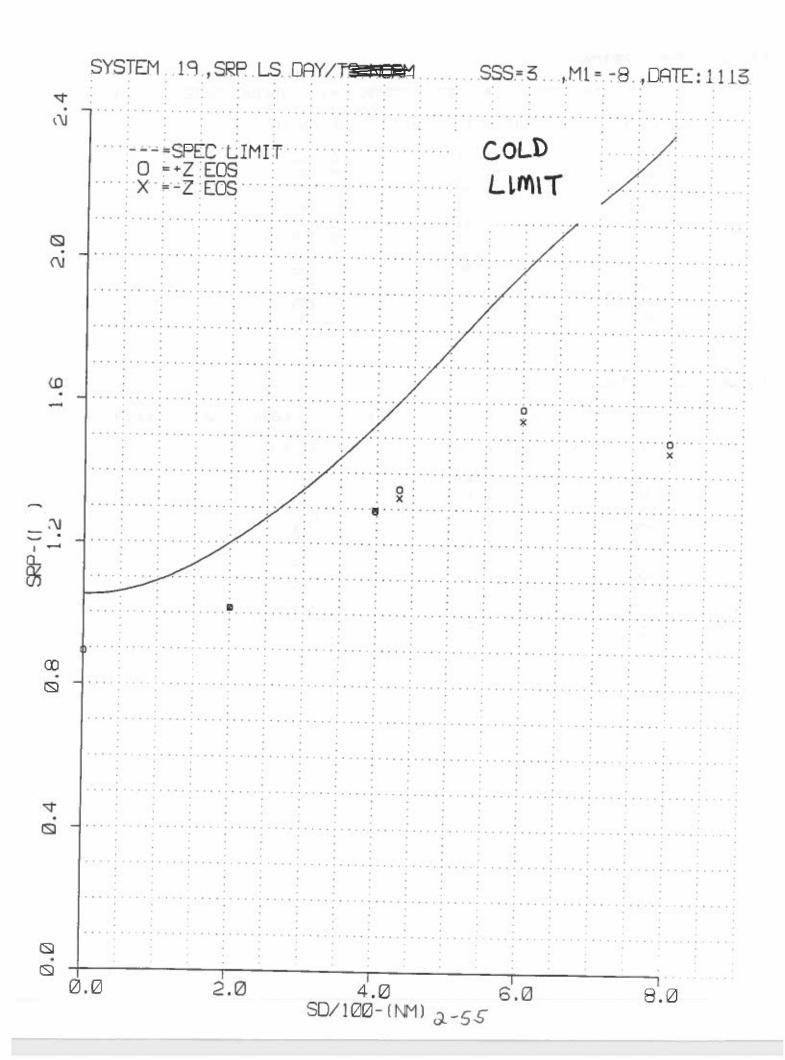
ATTACHMENTS: LS Day SRP Curve Hot Limits

LS Day SRP Tables Hot Limits

LS Day SRP Curve Cold Limits

LS Day SRP Tables Cold Limits

LS, DAY, NORMAL, PRIMARY


FLT. NO. = 19 ENV. = 4 SSS= 7DEGC M1= 12DEGC DATE: 1122

SUR. DIST. (NM)	SRP ACTUAL(NM)	SRP RATIO
-800.	1. 474	0. 427
0.	0. 000	0.000
-431.	1. 338	0. 836
-398.	1.303	0.850
0.	0. 000	0.000
0.	0. 896	0.853
0.	0. 000	0. 000
378.	1.301	0.848
431.	1.363	0. 851
0.	0. 000	0.000
B00.	1. 504	0. 640

LS, DAY, NORMAL, BACKUP

FLT. NO. = 19 ENV. = 4 SSS= 7DEGC M1= 12DEGC DATE: 1122

SUR. DIST. (NM)	SRP ACTUAL (NM)	SRP RATIO	
-800.	1. 466	0. 624	
Ο.	0. 000	0.000	
-431.	1. 331	0.831	
-398.	1. 296	0. 845	
0.	0. 000	0.000	
O.	0. 891	0.849	
0.	0. 000	0.000	
398.	1. 294	0. 844	
431.	1. 356	0. 847	
Ο.	0. 000	0.000	
800.	1. 496	0. 437	

LS, DAY, NORMAL, PRIMARY

FLT. NO. = 19 ENV. = 4 SSS= 3DEGC M1= -8DEGC DATE: 1113

SUR. DIST. (NM)	SRP ACTUAL (NM)	SRP RATIO
-800.	1. 465	0. 623
-600.	1. 550	0. 787
-431.	1.331	0. 831
-378.	1. 296	0.845
-200.	1.014	0.846
0.	0. 892	0. 849
200.	1.015	0. 846
378.	1. 293	0. 844
431.	1. 355	0. 846
601.	1. 582	0. 803
800.	1. 493	0. 435

LS, DAY, NORMAL, BACKUP

FLT. NO. = 19 ENV. = 4 SSS= 3DEGC M1= -8DEGC DATE: 1113

SUR. DIST. (NM)	SRP ACTUAL(NM)	SRP RATIO
-800.	1. 458	0. 621
-600.	1. 541	0. 783
-431.	1. 323	0. 826
-398.	1. 290	0. 841
-200.	1.009	0. 842
0.	0. 887	0. 845
200.	1.010	0.842
378.	1. 289	0. 840
431.	1.348	0. 842
601.	1. 575	0. 799
800.	1.486	0. 632

2.2 <u>Geometric Resolution</u> (Cont'd)

2.2.5 Smoothed Geometric Resolution - Nighttime Visual (3.2.1.1.2.2)

LS Night SRP routinely is deliberately adjusted to be close to spec limit during system integration in order to optimize PMT signal-to-noise ratio, at the expense of SRP margin.

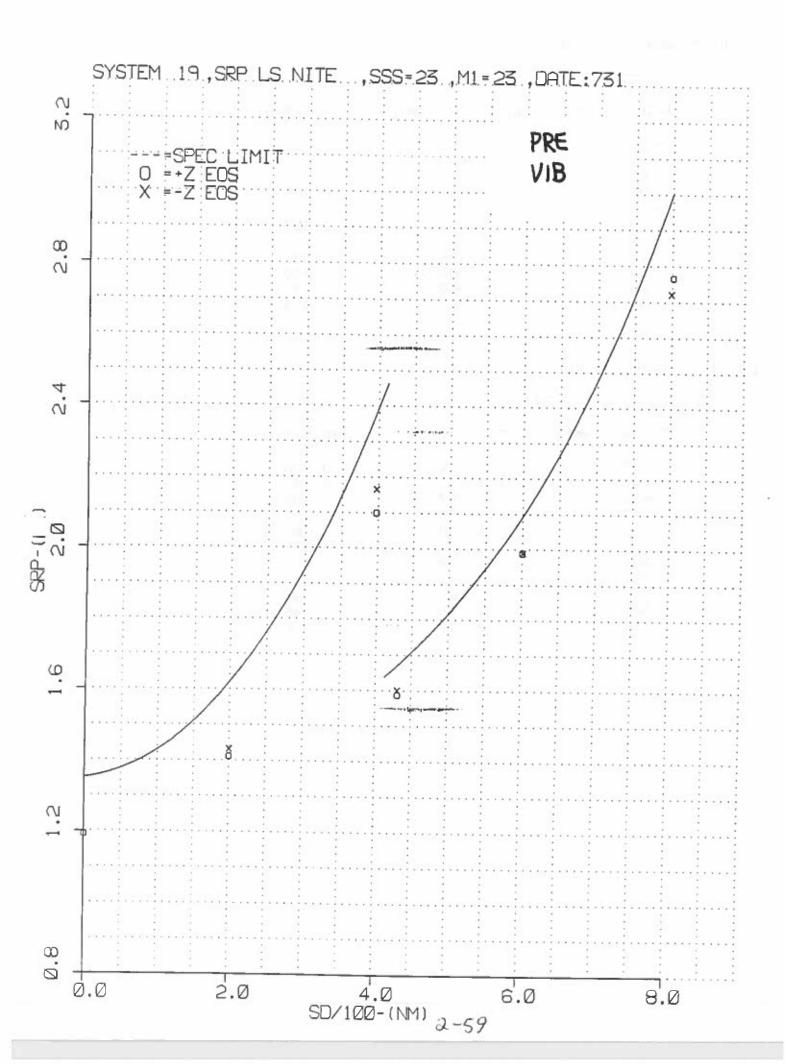
2.2.5.1 Baseline (Orbit Nominal)

Effective with OLS 18 the nominal environment is no longer part of OLS testing.

- 2.2 <u>Geometric Resolution</u> (Cont'd)
- 2.2.5 Smoothed Geometric Resolution Nighttime

<u>Visual</u> (Cont'd) (3.1.2.2)

2.2.5.2 Acceptance - Vibration


The LS Night SRP is within specification before and after SSS vibration. No vibration-induced changes in SRP were observed.

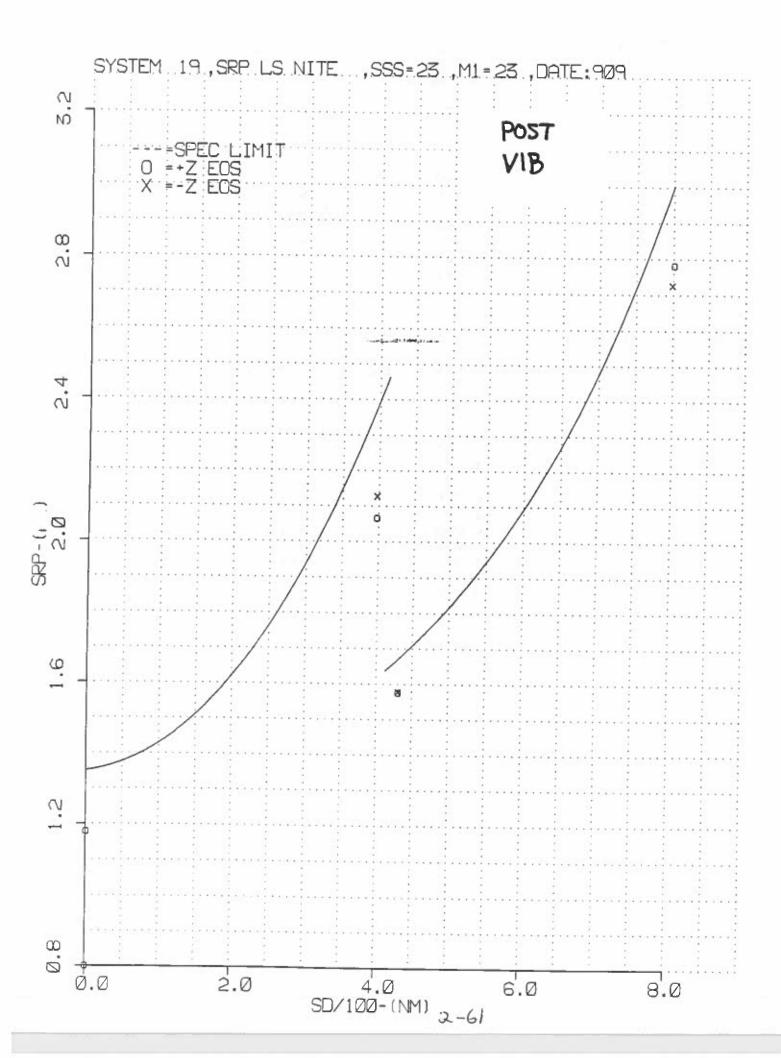
ATTACHMENTS: LS Night SRP Curve Pre-Vibration

LS Night SRP Tables Pre-Vibration

LS Night SRP Curve Post-Vibration

LS Night SRP Tables Post-Vibration

LS, NITE, NORMAL, PRIMARY


FLT. NO. = 19 ENV. = 2 SSS= 23DEGC M1= 23DEGC DATE: 731

SUR. DIST. (NM)	SRP ACTUAL(NM)	SRP RATIO
−799 .	2. 722	0. 909
-601.	1. 990	0. 949
-430 .	1. 601	0. 958
-397.	2. 166	0. 909
-200.	1. 431	0.883
Ο.	1. 192	0. 882
200.	1. 411	0. 870
39 7.	2. 100	0. 881
430.	1. 588	0. 950
600.	1. 989	0. 950
801.	2. 767	0. 920

LS, NITE, NORMAL, BACKUP

FLT. NO. = 19 ENV. = 2 SSS= 23DEGC M1= 23DEGC DATE: 731

SUR. DIST.	(NM)	SRP	ACTUAL (NM)	SRP	RATIO
-799.			2. 712	0.	906
-601.			1. 985	0.	947
-430.			1. 597	0.	956
-397.			2. 159	0.	907
-200.			1. 428	O.	880
O.			1. 189	0.	881
200.			1. 408	0.	848
397.			2. 093	0.	879
430.			1. 584	Q.	948
600.			1. 985	0.	948
801.			2. 756	0.	916

LS, NITE, NORMAL, PRIMARY

FLT. NO. = 19 ENV. = 2 SSS= 23DEGC M1= 23DEGC DATE: 909

SUR. DIST. (NM)	SRP	ACTUAL (NM)	SRP RATIO
-799 .		2. 725	0. 910
O.		0. 000	0.000
-430.		1. 578	0. 944
−397 .		2. 128	0. 893
O.		0. 000	0.000
Ο.		1. 178	0. 873
0.		0. 000	0.000
397.		2. 066	0.867
430.		1. 575	0. 943
Ο.		0. 000	0. 000
801.		2. 781	0. 925

LS, NITE, NORMAL, BACKUP

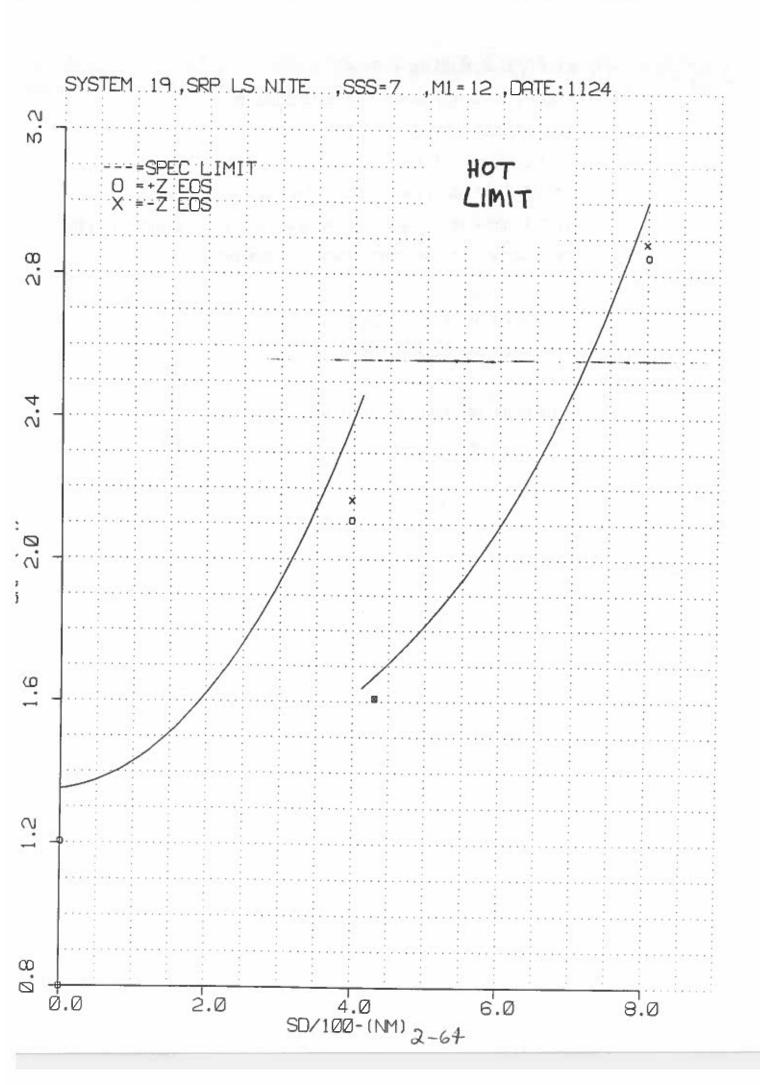
FLT. NO. = 19 ENV. = 2 SSS= 23DEGC M1= 23DEGC DATE: 909

SUR. DIST. (NM)	SRP ACTUAL(NM)	SRP RATIO	
-799 .	2. 714	0. 906	
Ο.	0. 000	0. 000	
-430.	1. 574	0. 942	
-397.	2. 121	0. 890	
Ο.	0. 000	0. 000	
Ο.	1. 176	0. 871	
Ο.	0. 000	0. 000	
397.	2.060	0. 865	
430.	1. 571	0. 940	
О.	0. 000	0. 000	
801.	2. 770	0. 921	

- 2.2 <u>Geometric Resolution</u> (Cont'd)
- 2.2.5 <u>Smoothed Geometric Resolution Nighttime</u>

<u>Visual</u> (Cont'd) (3.1.2.2)

2.2.5.3 Acceptance - Thermal Vacuum


The LS Night SRP is within specification limits over the Acceptance temperature range. No temperature-related changes in SRP over the Acceptance temperature range were observed.

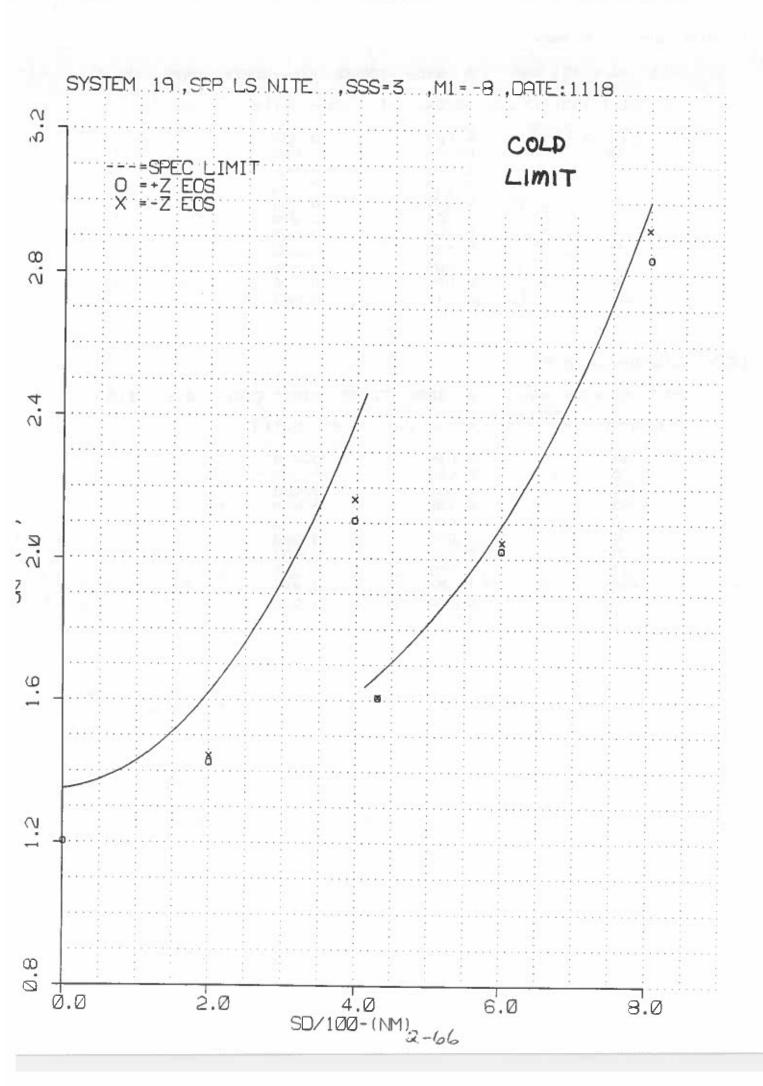
ATTACHMENTS: LS Night SRP Curve Hot Limits

LS Night SRP Tables Hot Limits

LS Night SRP Curve Cold Limits

LS Night SRP Tables Cold Limits

LS, NITE, NORMAL, PRIMARY


FLT. NO. = 19 ENV. = 4 SSS= 7DEGC M1= 12DEGC DATE: 1124

SUR DIST. (NM)	SRP	ACTUAL(NM)	:	SRP RATIO
-799. 0.		2. 887 0. 000		0. 944 0. 000
-430.		1. 609		0. 963
-397 .		2. 167		0. 910
0.		0.000		0. 000
0.		1. 204		0.892
0.		0. 000		0.000
397.		2. 110		0.886
430.		1. 409		0. 963
0.		0. 000	-	0. 000
801.		2. 849	100	0. 947

LS, NITE, NORMAL, BACKUP

FLT. NO. = 19 ENV. = 4 SSS= 7DEGC M1= 12DEGC DATE: 1124

SUR. DIST. (NM)	SRP	ACTUAL(NM)	SRP	RATIO
- 79 9 .		2. 869	٥.	958
0.		0. 000	0.	000
-430.		1. 604	0.	960
-397.		2. 155	0.	905
0.		0. 000	0.	000
Q.		1.200	0.	888
0.		0. 000	٥.	000
397.		2. 099	0.	881
430.		1. 604	0.	960
Ο.		0. 000	0.	000
801.		2. 831	0.	941

LS, NITE, NORMAL, PRIMARY

FLT. NO. = 19 ENV. = 4 SSS= 3DEGC M1= -8DEGC DATE: 1118

-799.	
-601. 2. 046 0. 976	
-430. 1. 609 0. 963	
-397 . 2.166 0.909	
-200. 1. 444 0. 89 0	
0. 1. 203 0. 891	
200. 1. 425 0. 87 9	
397. 2. 107 0. 884	
430. 1. 607 0. 962	
600. 2. 022 0. 966	
801. 2.841 0.945	

LS, NITE, NORMAL, BACKUP

FLT. NO. = 19 ENV. = 4 SSS= 3DEGC M1= -8DEGC DATE: 1118

SUR. DIST. (NM)	SRP ACTUAL(NM)	SRP RATIO
- 799.	2. 914	0. 973
-601.	2. 040	0. 973
-430.	1. 605	0. 960
-397.	2. 159	0. 906
200.	1. 439	0. 887
0.	1. 200	0. 888
200.	1. 421	0. 876
397.	2. 100	0. 881
430.	1. 603	0. 959
600 .	2. 016	0. 963
801.	2. 831	0. 941

2.2 <u>Geometric Resolution</u> (Cont'd)

2.2.6 Data Sampling (3.2.1.1.2.3)

The sampling frequency ratios for all modes of the 5D-3 OLS satisfy the specification requirements. The calculations are contained in the 5D-3 OLS System Summary Report. The results are summarized below. The worst-case sampling frequency ratio for each mode is given.

MODE	<pre>SAMPLING FREO. RATIO (Spec: > 2.4)</pre>
LF Day - Normal	2.58
LF Day - Fallback	2.61
LS & TS Day - Normal	2.50
LS Night - Normal	2.66
TF - Normal	3.44
TF Fallback - Normal Side of sca	n 3.28
TF Fallback - Abnormal Side of S	can 3.28

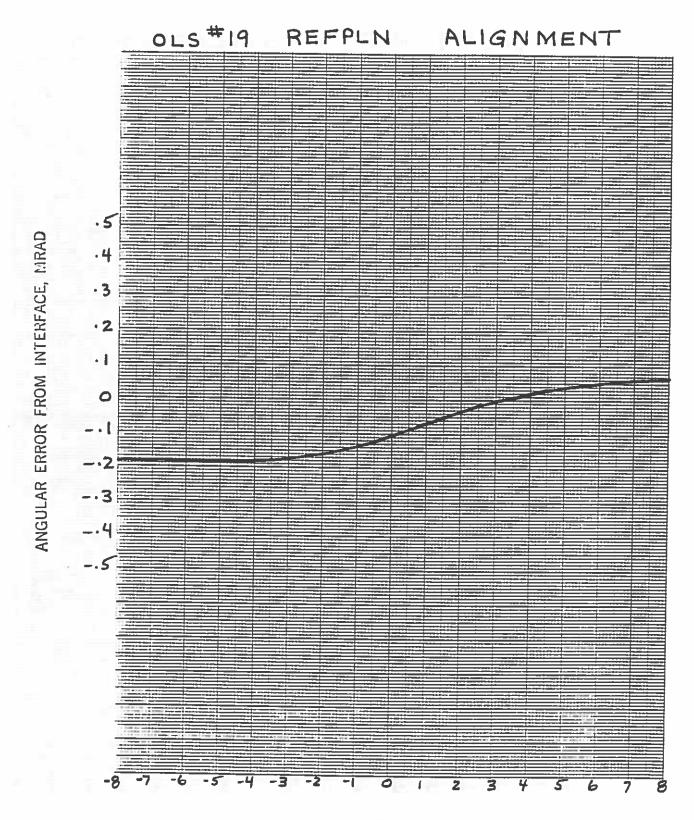
2.3 <u>Geometric Accuracy</u> (3.2.1.1.3.1 thru 3.2.1.1.3.4)

The alignment and synchronization of the SSS determine the Geometric Accuracy. Geometric accuracy is specified in 3 categories (Repeatability, Stability & Fixed Errors). Within these categories, accuracy is further specified for Along Track, Along Scan (Stored Data), Along Scan (Direct Data), and Along Scan (with digital delphi generation, i.e., the Encoder Simulator locked mode).

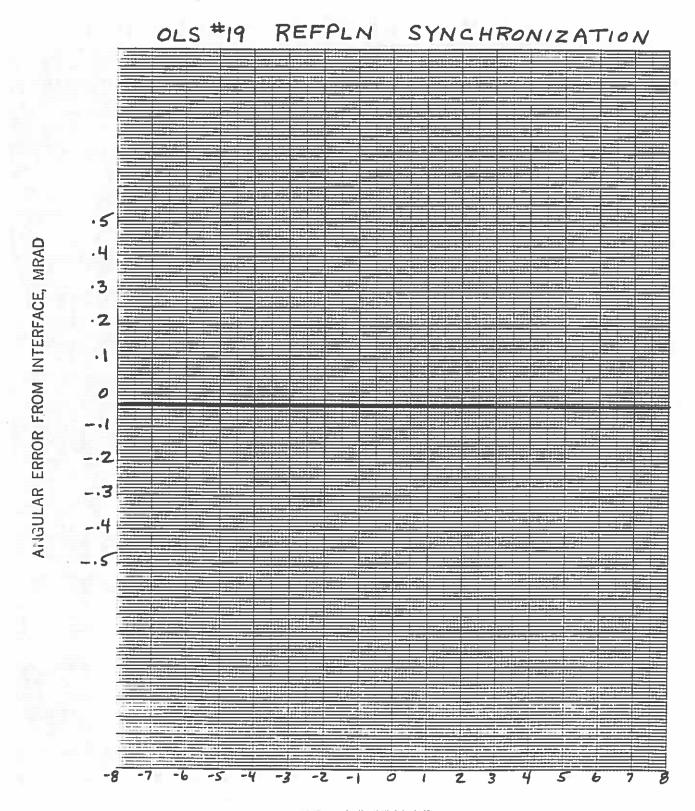
There was an observed shift in alignment between the extremes of M1 temperature of -8°C and +12°C on the order of 0.02 milliradians or less for all channels. There was also an observed shift in synchronization in all modes in OLS #19 of approximately 0.15 milliradians or less between M1 temperature extremes of -8°C and +12°.

The Repeatability error is calculated using the rms difference of the measured alignment/synchronization (as a function of the variation of M1 temperature on orbit) from the hot-to-cold average values of alignment/ synchronization. The total Repeatability contribution for synchronization is determined by rss'ing the wow-flutter error (as measured in test 6x11.ST) and the jitter error (which was negligible on OLS #19) with the repeatability shift between the Hot and Cold Limits.

The Primary Alignment Reference Axes (REFPLN) are calculated in a computer program using HRD & T channel Alignment and Sync data from several tests. The data determine a best-fit alignment with respect to the Interface Mounting Axes. The REFPLN Alignment and REFPLN Synchronization curves are included here. The remainder of the Alignment and Synchronization data for the OLS #19 SSS are in BVS 2761, Vol. III of this Acceptance Test Report.


The 5D-3 System has a Fallback mode utilizing an encoder control track and Encoder Simulator. The spec limits and measured results are shown in Table 2.3-2.

ATTACHMENTS: OLS #19 REFPLN ALIGNMENT


OLS #19 REFPLN SYNCHRONIZATION

OLS #19 ALIGN/SYNC vs SPEC, Table 2.3-1

OLS #19 Encoder Simulator Sync, Table 2.3-2

SURFACE DISTANCE, NM/100

SURFACE DISTANCE, NM/100

Table 2.3-1

OLS #19 ALIGN/SYNC vs. SPEC
all numbers in milliradians

FIXED - Delta between "REFPLN"	HRD	<u>T</u>	PMT
<u> & Optic Hot - Cold Average</u>			
AT SPEC	0.45	0.70	0.60
Measured (worst-case)	0.15	0.22	0.41
AS STORED SPEC	0.80	0.80	1.90
Measured (worst-case)	0.26		
AS DIRECT FINE SPEC		0.25	0.93
Measured (worst-case)	0.80	0.80	1.90
AS DIRECT SMOOTH SPEC	0.26*	0.25*	N/A
	0.80	0.80	1.90
Measured (worst-case)	0.26*	0.25*	1.18
STABILITY - Delta Between Pre & Post - Vi			
AT SPEC	0.50	0.55	0.55
Measured (worst-case)	0.02	0.09**	0.04
AS STORED SPEC	0.20	0.25	0.25
Measured (worst-case)	0.04	0.12**	0.08
AS DIRECT FINE SPEC	0.20	0.25	0.25
Measured (worst-case)	0.04*	0.12**	N/A
AS DIRECT SMOOTH SPEC	0.20	0.25	0.25
Measured (worst-case)	0.04*	0.12**	0.12
REPEATABILITY - Delta between TV Hot & Col	d limite		
AT SPEC		0.00	0.00
Measured (rms)	0.20	0.22	0.20
AS STORED SPEC	0.02	0.02	0.02
	0.30	0.30	0.30
Measured (rms)	0.09	0.08	0.15
AS DIRECT FINE SPEC	0.50	0.50	0.50
Measured (rms)	0.08	0.08*	N/A
AS DIRECT SMOOTH SPEC	2.00	2.00	2.00
Measured (rms)	0.10	0.08*	0.07
TOTAL -			
AT SPEC	1.00	1.30	1.20
Calculated	0.18	0.31	0.45
AC CTORED COLC			
AS STORED SPEC	1.16	1.19	2.29
Calculated	0.36	0.39	1.10
AS DIRECT FINE SPEC	1.34	1.36	2.46
Calculated	0.35	0.39	N/A
AS DIRECT SMOOTH SPEC	2 01	2 02	•
Calculated	2.81 0.37	2.82	3.92
	0.3/	0.39	1.32

Table 2.3-2
OLS #19 ALONG-SCAN GEOMETRIC ACCURACY WITH ENCODER SIMULATOR

	<u>Stored</u>	Direct Fine	Direct Smooth
Repeatability-Spec, mrad	1.0	1.1	2.2
Measured	0.10		0.09
Stability - Spec, mrad	0.50	0.50	0.50
Measured	0.20	0.2 0 *	0.20*
Fixed - Spec, mrad	10.0	10.0	10.0
Measured	0.50	0.50*	0.50*
Total - Spec, mrad	11.1	11.2	12.3
Calculated	0.72	0.72	0.72

^{*}Inferred from stored number

2.4 RADIOMETRIC ACCURACY

2.4.1 T Channel Radiometric Accuracy (3.2.1.1.4.1 a,b,c)

The <u>overall</u> one sigma accuracy of the OLS #19 T Channel DC response is 0.74°K compared to a 1.1°K spec and therefore OLS #19 does meet this specification requirement.

Table 2.4.1-1 presents the overall summary of performance, which is discussed more fully in sections 2.4.1.1, 2.4.1.2 and 2.4.1.3.

ATTACHMENTS:	
Table 2.4.1-1	Overall Contributors
Table 2.4.1-2	210° to 310°K Best Straight Line
	Calibrations
Table 2.4.1-3	T DC Response Compilation of Test Runs
Table 2.4.1-4	BSL Equation T Right, Run #9
Table 2.4.1-5	BSL Equation T Mid, Run #9
Table 2.4.1-6	BSL Equation T Left, Run #9
Figure 2.4.1-1	T DC Response Plots, Run #1 - Primary
Figure 2.4.1-2	T DC Response Plots, Run #1 - Redundant
Figure 2.4.1-3	T DC Response Plots, Run #8 - Primary
Figure 2.4.1-4	T DC Response Plots, Run #8 - Redundant
Figure 2.4.1-5	T DC Response Plots, Run #9 - Primary
Figure 2.4.1-6	T DC Response Plots, Run #9 - Redundant

TABLE 2.4.1-1

OLS #19

OVERALL CONTRIBUTORS TO T-CHANNEL RADIOMETRIC ACCURACY

SPE	ECIFICATION PARA. 3.1.4.1	RMS DEVIATION (•K)	SPECIFICATION MAX ONE SIGMA ERROR (•K)
a)	Repeatability (<1 day)	0.22	0.42
b)	Stability (>1 day)	0.61	0.80
c)	Fixed Deviations	0.35	0.60
	TOTAL (RSS) ACCURACY	0.74	1.10

Discussion of T DC Response Test and Overview

The measurement of T DC Response is accomplished in the thermal vacuum chamber because the T detector must be cooled to its operating temperature of near 110°K. Two controlled blackbody targets variable in temperature over the dynamic range of 190°K to 310°K provide the absolute infrared radiance reference. The temperature of each target is measured by five thermocouples which have been calibrated against a precision platinum resistance temperature standard. The five thermocouples provide target temperature gradient information to indicate target stability as well as the capability to average the five for the reference target temperature. T Channel DC Response consists of comparing the average target temperature to the channel output voltage at the input to the A/D converters for several target temperatures.

Sixteen vacuum runs were made on OLS #19. The T DC Response data from vacuum runs (1 through 16) is compiled in Table 2.4.1-2 and -3, which show the equipment temperature environments and characteristics of each run.

The column headed "Data Points" indicates how many target temperatures were in that run. The characteristics of the response itself are indicated in three columns each for T LFT, T MID and T RGT. The compared channel response to target temperature results in a difference for each data point. This difference is corrected for M1 Temperature so that all data for a given run reflect the same M1 temperature and the expected shaper circuit difference is subtracted. In this form the difference data for a given run should ideally be a linear function vs. target temperature. A linear least-squares fit to the corrected data is used to determine the equation of the best straight line (BSL). In Table 2.4.1-2 the slope error, the 210°K ordinate and the RMS data fit values for these different BSL's are listed in the columns headed Slope, Ordinate at 210°K, and RMS Dev.

In order to distinguish between gain and bias type effects caused by environment, the 310°K value that results when the 210°K BSL value is forced to zero difference is also calculated. Table 2.4.1-3 shows the pre-shaper % gain Difference from Nominal, the Bias Diff. from Nominal (at 190°K) where the pre-shaper Gain is forced to nominal, and the M1 temperature coefficient (K factor); in three columns each for TRGT, TMID and TLEFT.

Tables 2.4.1-4, -5 and -6 show the STS computer processed and gain compensated T DC Response Data of the final "Hot Limit" Run (Run #9) for TRGT, TMID, and TLEFT respectively. The fourth line down in the body of the Best Straight Line Equation, "RMS Deviation", is the RMS error (for 210 K to 310 K) of the data points fitted to the best straight line. "FP" is T Fine Primary; "FB" is T Fine, Backup (Redundant); "SP" is T Smoothed, Primary; "SB" is T Smoothed, Backup (redundant). The SP and SB are not used for T Right Only or for T Left Only in the Primary or Redundant normal modes; these are utilized only in the Fallback (slightly degraded) modes of operation. SP and SB are applicable to T Mid in normal Primary or Redundant modes.

Runs 8 and 9 together indicate the changes which accompany operation over the foreoptics cold-to-warm temperature range as indicated by M1 temperature.

Runs 4 and 5 or 6 and 7 together indicate the magnitude of the variation over the extremes of SSS temperature, (+12° to -2°C); when compared to the +7°C SSS run pairs with the corresponding M1 temperatures, (Runs 8 and 9, respectively). However, changes between these runs are not only due to SSS temperature differences. The PSU, which contains the shaper networks was varied in temperature along with the SSS, from a low of -1.1°C to a high of +37.9°C.

Figures 2.4.1-1 through 2.4.1-6 inclusive show, for Run No. 1 along with No. 8 and No. 9, (respectively), the test data points for Targets 1 and 2 and the BSL plots for Right, Mid, and Left. (No BSL data plot was obtained for Runs 2 through 7).

The OLS #19 average M1 coefficient (coupling factor) measured for the Hot Limit run (#9) was 0.199 K at 210 K scene per 1 C temperature change of M1. The lower the M1 coefficient value, the better the performance. The T Clamp leakage was +0.107% T LEFT and +0.068% RIGHT.

The BSL differences (from Table 2.4.1-4,5 and 6) between Fine Primary and Fine Backup are small, the largest being 0.18 K for T Lft, at the 310 K end. In the Smooth Primary and Backup modes, T Lft differs by 0.19 K (at 190 K).

The difference between T LEFT and T RIGHT segments calibration (from Tables 2.4.1.3-3 and 4) is 0.41°K worst-case, vs. a spec limit of 1.0°K.

Runs 10 thru 16 were run at two target temperatures only. Their purpose was to check for any changes in the T channel caused by going in and out of vacuum during various OLS repair cycles. Data from these runs show that the T channel gain and bias showed no gross changes as the OLS was moved in and out of vacuum.

210° TO 310°K BEST STRAIGHT LINE CALCULATIONS

	COMMENIS	TVac adjust	9	COLD OPTIC	HOT OPTIC LIMIT	COLD SOAK #1	HOT SOAK #1	COLD SOAK #2	HOT SOAK #2	COLD LIMIT	HOT LIMIT		HOT SOAK #3	COLD SOAK #3		HOT SOAK #4	COLD SOAK #4
_	RMS	0.18	10 1	0.00	0.00	0.00	0.00	0.00	0.00	0.24	0.24		0.00	0.00		00.00	0.00
	ORD. @ 210*	09.0		0.16	-0.21	0.11	-0.30	-0.01	-0.24	0.55	0.05		£0.0	0.32	٥	-0.12	0.14
T LEFT	SLOPE	0.0053		0.0070	0.0028	0.0141	0.0020	0.150	0.0007	0.0088	0.0014	I	-0.0073	0.0060	117	-0.0057	0.0075
	RMS DEV	0.16	-1	0.00	0.00	00.0	00.00	00.00	00.00	0.19	0.22	М	00.0	00.0	1	00.00	0.00
0.1	ORD. @ 210*	0.77		0.42	-0.27	0.25	-0.23	0.18	-0.18	0.68	0.00		-0.06	0.43	E E	-0.18	0.23
T MID	SLOPE	0.0012		0.0031	0.0017	0.0103	0.0000	0.0107	-0.0010	0.0053	0.0001		-0.0067	0.0028		-0.0053	0.0042
	RMS	0.18	REAK	00.00	0.00	0.00	0.00	00.0	00.0	0.20	0.23	BREAK	00.0	00.0	REAK	00.0	0.00
	0RD.	0.50	VACUUM BREAK	0.15	-0.71	-0.09	-0.76	-0.06	-0.68	0.41	-0.36	VACUUM B	-0.59	0.01	VACUUM BREAK	-0.74	-0.09
T RIGHT	SLOPE	0.0028		0.0050	0.0059	0.0118	0.0053	0.0118	0.0035	0.0067	0.0030		-0.0007	0.0062		0.0004	0.0061
J.	PSU	23.1		32.8	32.6	-0.8	37.9	-0.3	37.9	3.8	32.7		37.2	-0.8		37.0	-1.0
TEMPERATURE	댶	-8.2		-7.8	11.7	-10.6	15.2	-10.7	14.8	-7.8	12.1		15.5	-11.0		15.5	-10.6
TEM	\$58	4.1		6.2	6.2	-2.2	11.0	-2.2	11,3	2.5	6.4		11.6	-2.1		11.5	-2.2
# 0F	POINTS	ဖ		2	2	2	2	2	2	8	89		2	2		2	2
	႕	13		13	8	13	œ	13	80	13	80		80	13		80	13
, c	16.	9/9		9/9	9/9	9/9	9/9	9/9	9/9	9/9	9/9		9/9	9/9		9/9	9/9
	RUN#			2	m	4	ın	9	7	æ	o o		10	11		12	13
	DATE	TDCRM3A 10/17/93		T121T231E 11/04/93	T121T231D 11/04/93	T121T231B 11/05/93	T121T231B 11/07/93	T121T231B 11/09/93	T121T231B 11/11/93	TDCRM3B 11/16/93	TDCRM3B 11/27/93		T121T231B 1/28/94	T121T231B 1/29/94		T12172318 2/12/94	T121T231B 2/14/94

2-80

BVS 2759

BVS 2759

TABLE 2.4.1-2 (continued)
0LS #19
210° TO 310°K BEST STRAIGHT LINE CALCULATIONS

- 1		,		# OF	TEMPER	TEMPERATURE .C		T RIGHT			T HID			T LEFT			
DATE	RUN#	16 16	ㄹ		\$55	Æ	Psu	SLOPE	ORD. @ 210*	RMS DEV	SLOPE	ORD. @ 210*	RMS	SLOPE	ORD. Ø 210*	RMS	COMMENTS
T121T231B 2/16/94	14	9/9	6/6 13	2	4.8	-7.8	22.7	0.0013 -0.06	-0.06	0.00	-0.0023 0.37	0.37	0.00	0.00 0.0013	0.15	0.00	NOMINAL
					I			ľ	VACUUM BREAK	REAK							
T1217231B 3/04/94	15	9/9	æ	2	10.9	10.9 15.1	36.9	0.0066	' -	0.00	-0.0005 -0.36	-0.36	0.00	0.00 -0.0014 -0.26		0.00	HOT SOAK #5
T12172318 3/05/94	16	9/9	6/6 13	2	-2.5	-2.5 -10.4	-1.1	0.0102	-0.17	0.00	0.0076	0.17	0.00	0.00 0.0084	0.12	0.00	COLD SOAK #5

TABLE 2.4.1-3
OLS #19
T DC RESPONSE COMPILATION OF TEST RUNS

					TEM	TEMPERATURE	٥.	T RIGHT	IGHT	T NJ	T MID			T LEFT			
DATE	RUN	R/L TG	=	# OF DATA POINTS	\$88	H1	PSU	X GAIN DIFF. FROM NOM.	BIAS DIFF. FROM NOM.	K FACTOR	% GAIN DIFF. FROM NOM.	BIAS DIFF. FROM NOM.	K FACTOR	X GAIN DIFF. FROM NOM.	BIAS DIFF. FROM KOM.	K FACTOR	COMMENTS
TDCRM3A 10/17/93	1	9/9	13	9	4.1	-8.2	23.1	0.91	1.17	.242	0.93	1.57	.245	1.36	1.53	.248	TVAC ADJUST NOMINAL
									VAC	VACUUM BREAK				i			
T1217231E 11/04/93	2	9/9	13	2	6.2	-7.8	32.8	0.89	0.66	.188	0.87	1.04	197	1.20	0.83	.213	COLD OPTIC LIMIT
T121T231D 11/04/93	က	9/9	æ	2	6.2	11.7	32.6	0.19	-0.97	.188	-0.02	-0.41	197	0.22	-0.20	.213	HOT OPTIC LIMIT
T121T231B 11/05/93	4	9/9	13	2	-2.2	-10.6	-0.8	1.67	0.48	.188	1.77	1.02	.197	2.21	1.00	.213	COLD SOAK #1
T121T231B 11/07/93	rs.	9/9	ω	2	11.0	15.2	37.9	0.05	-1.10	.188	-0.22	-0.47	.197	0.01	-0.44	.213	HOT SOAK #1
T121T231B 11/09/93	9	9/9	13	2	-2.2	-10.7	-0.3	1.70	0.56	.188	1.76	0.92	.197	2.21	0.82	.213	COLD SOAK #2
T1215231B 11/11/93	7	9/9	œ	2	11.3	14.8	37.9	-0.14	-1.08	.188	-0.32	-0.43	.197	-0.13	-0.43	.213	HOT SOAK #2
TDCRM3B 11/16/93	89	9/9	13	89	2.5	-7.8	3.8	1.40	1.21	.188	1.45	1.62	.197	1.84	1.61	.213	COLD LIMIT
TDCRM3B 11/27/93	6	9/9	©	æ	6.4	12.1	32.7	0.09	-0.50	.188	0.01	0.01	.197	0.25	0.18	.213	HOT LIKIT
									VACI	VACUUM BREAK							
T121T231B 1/28/94	10	9/9	ω,	2	11.6	15.5	37.2	-0.67	-1.27	.188	-1.04	-0.70	197	-1.06	-0.58	.213	HOT SOAK #3
T121T231B 1/29/94	11	9/9	13	5	-2.1	-11.0	-0.8	0.93	0.38	.188	0.84	96.0	.197	1.21	96.0	.213	COLD SOAK #3
=		F						7	VACI	VACUUM BREAK							
T121T231B 2/12/94	12	9/9	æ	2	11.5	15.5	37.0	-0.65	-1.49	.188	-0.96	-0.82	.197	-0.96	-0.74	.213	HOT SOAK #4

2-82

BVS 2759

BVS 2759

TABLE 2.4.1-3 (continued)
0LS #19
T DC RESPONSE COMPILATION OF TEST RUNS

		7	i i	T		T	
COMMENTS			COLD SOAK #4	NOMINAL		HOT SOAK #5	COLD SOAK #5
	K FACTOR		.213	.213		.213	.213
T LEFT	BIAS DIFF. FROM NOM.		0.72	0.39		-0.65	0.72
	A GAIN DIFF. FROM NOM.		1.26	0.34		-0.45	1.37
	K FACTOR		.197	1.97		197	.197
T HID	BIAS DIFF. FROM NOM.		0.67	0.55	_	-0.79	0.76
	% GAIN DIFF. FROM NOM.		0.85	0.01		-0.43	1.29
	K FACTOR		.188	.188	EAK	.188	.188
T RIGHT	BIAS DIFF. FROM NOM.		0.18	-0.03	VACUUM BREAK	-1.41	0.27
. 10	% GAIN DIFF. FROM NOM.		0.81	0.13		0.04	1.35
ű	Psu		-1.0	22.7		36.9	-1.1
TEMPERATURE	¥		-10.6	-7.8		15.1	-10.4
TEI	SSS		-2.2	4.8		10.9	-2.5
# 0F	POINTS		2	2		2	2
1			13	13		89	13
RL FL	2		9/9	9/9		9/9	9/9
RUK.	RUN **		13	14		15	16
DATE	-		T1217231B 2/14/94	T121T231B 2/16/94		T121T231B 3/04/94	11217231B 3/05/94

TABLE 2.4.1-4

OLS NUMBER 19

T RGT DATA OF 11/27/93

SSS AT 6.4-C

M1 AT 12.1-C

PSU TEMP = 32.7 · C

M1 Coefficient =0.188 K/C

T GAIN = 6

T LEVEL = 8

V2 < T Clamp > = 1.93604

K9 <TL Step Size> = 0.924388

BEST STRAIGHT LINE EQUATION

	FP	(A)	FB	SP	(A)	SB
BSL SLOPE	0.0030	-	0.0033	0.0031		0.0026
BSL AT 190K <k></k>	-0.42	(.10)	-0.52	-0.41	(.02)	-0.43
BSL AT 210K <k></k>	-0.36	(.09)	-0.45	-0.34	(.04)	-0.38
BSL AT 310K <k></k>	-0.07	(.06)	-0.13	-0.03	(.08)	-0.11
RMS DEVIATION <k></k>	0.23	-	0.24	0.24		0.22
BSL AT 310K;						
190 AT OV <k></k>	0.06	-	0.03	0.09	-	0.02
% CHANGE FROM						
NOM GAIN	0.09	- 1	0.04	0.13		0.03
BIAS DIFF FROM						
NORMAL 190K <k></k>	-0.50	-	-0.65	-0.45	-	-0.55

TABLE 2.4.1-5

OLS NUMBER 19

T MID DATA OF 11/27/93

SSS AT 6.4-C

M1 AT 12.1-C

PSU TEMP = 32.8 · C

M1 Coefficient =0.197 K/C

T GAIN = 0

T LEVEL = 8

V2 < T Clamp > = 1.94092

K9 <TL Step Size> = .924388

BEST STRAIGHT LINE EQUATION

	FP	(A)	FB	SP	(A)	SB
BSL SLOPE	0.0001	11.5	-0.0001	0.0001	- 1	-0.0002
BSL AT 190K <k></k>	0.00	(.10)	-0.10	0.02	(80.)	-0.06
BSL AT 210K <k></k>	0.00	(.10)	-0.10	0.02	(80.)	-0.06
BSL AT 310K <k></k>	0.01	(.13)	-0.12	0.03	(.11)	-0.08
RMS DEVIATION <k></k>	0.22	-	0.21	0.22	- 1	0.20
BSL AT 310K;						
190 AT OV <k></k>	0.01	-	-0.09	0.02	-	-0.06
% CHANGE FROM						
NOM GAIN	0.01	-	-0.12	0.03	-11	-0.09
BIAS DIFF FROM						
NORMAL 190K <k></k>	0.01	-	-0.21	0.04	-	-0.13

TABLE 2.4.1-6

OLS NUMBER 19

T LFT DATA OF 11/27/93

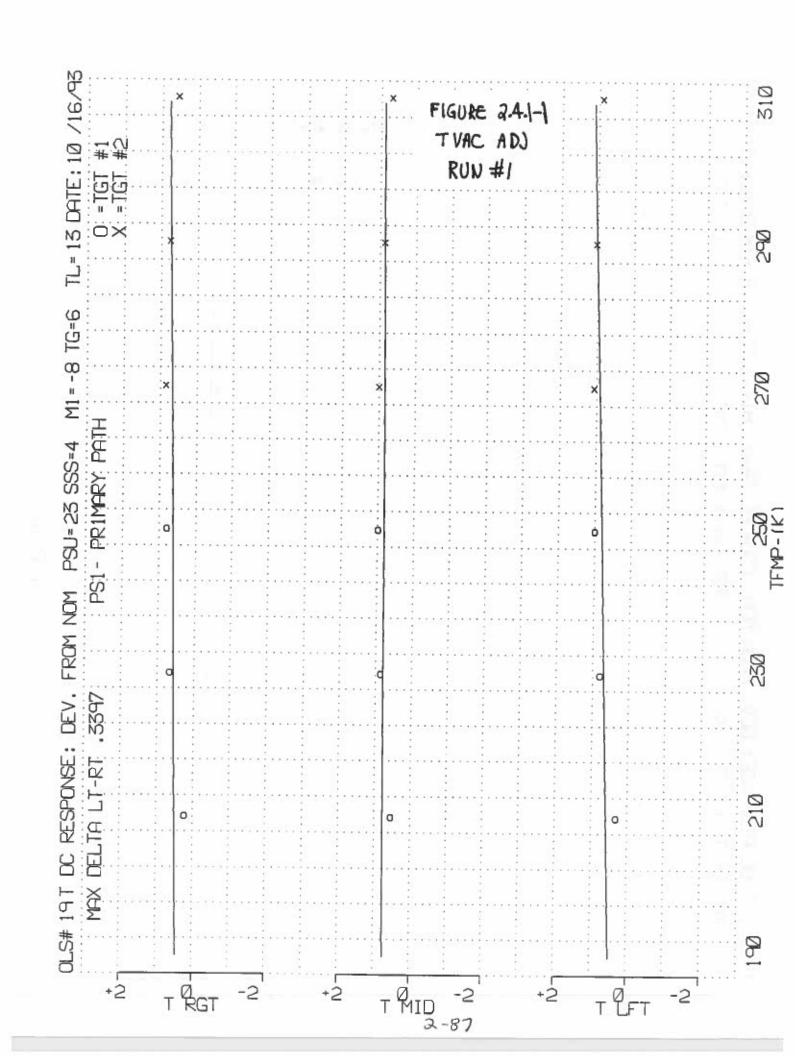
SSS AT 6.4.C

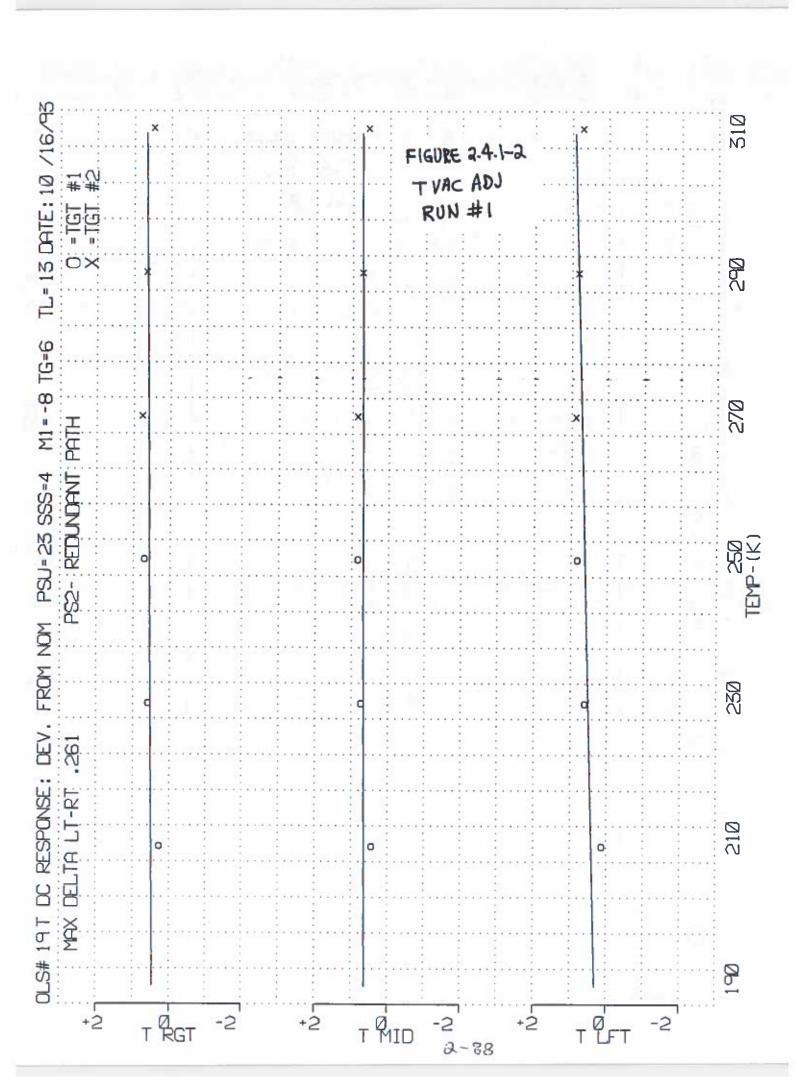
M1 AT 12.1.C

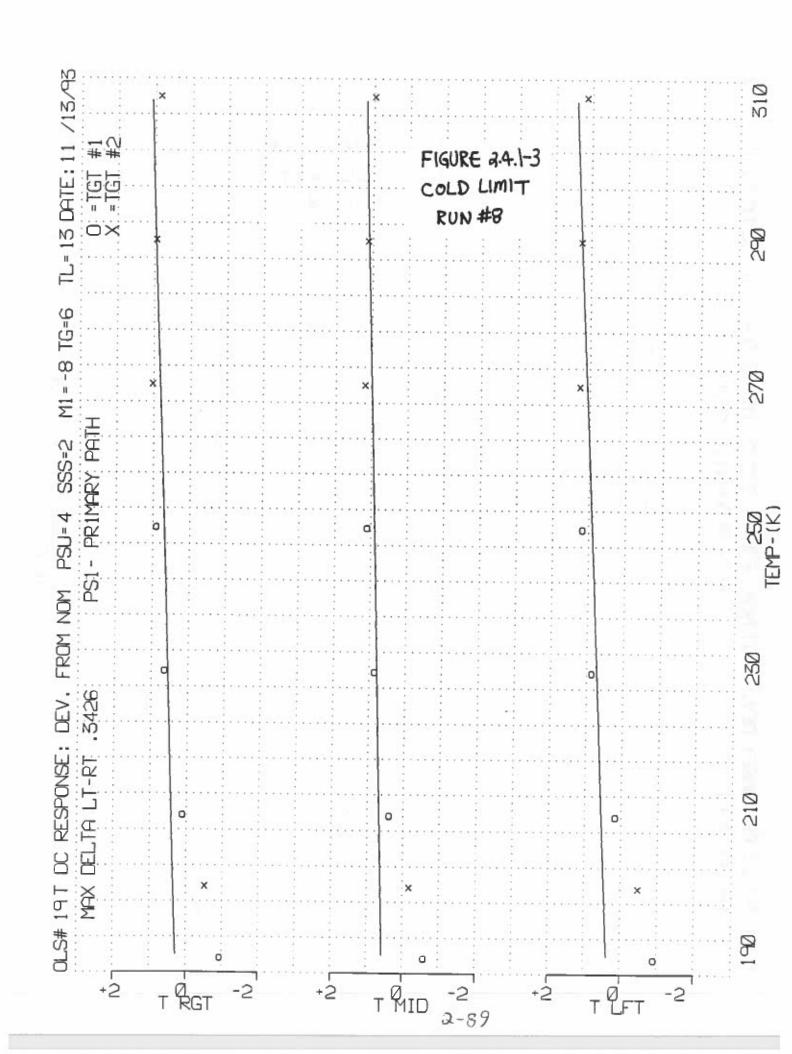
PSU TEMP = 32.8·C

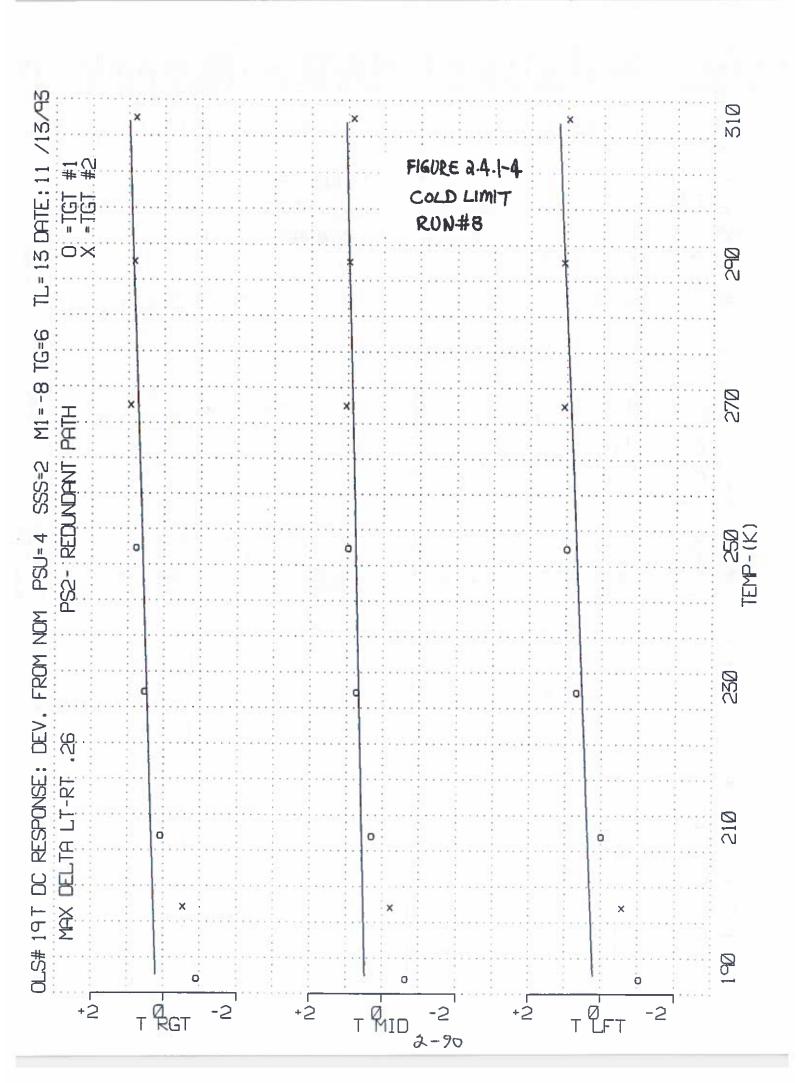
M1 Coefficient =0.213 K/C

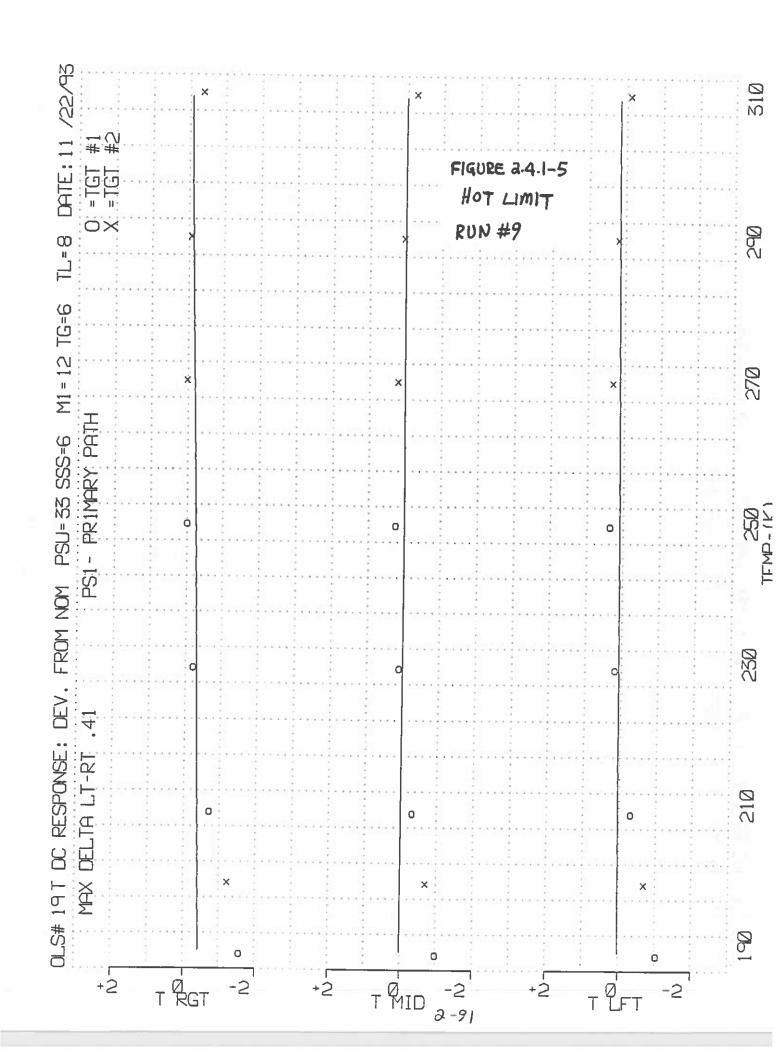
T GAIN = 6

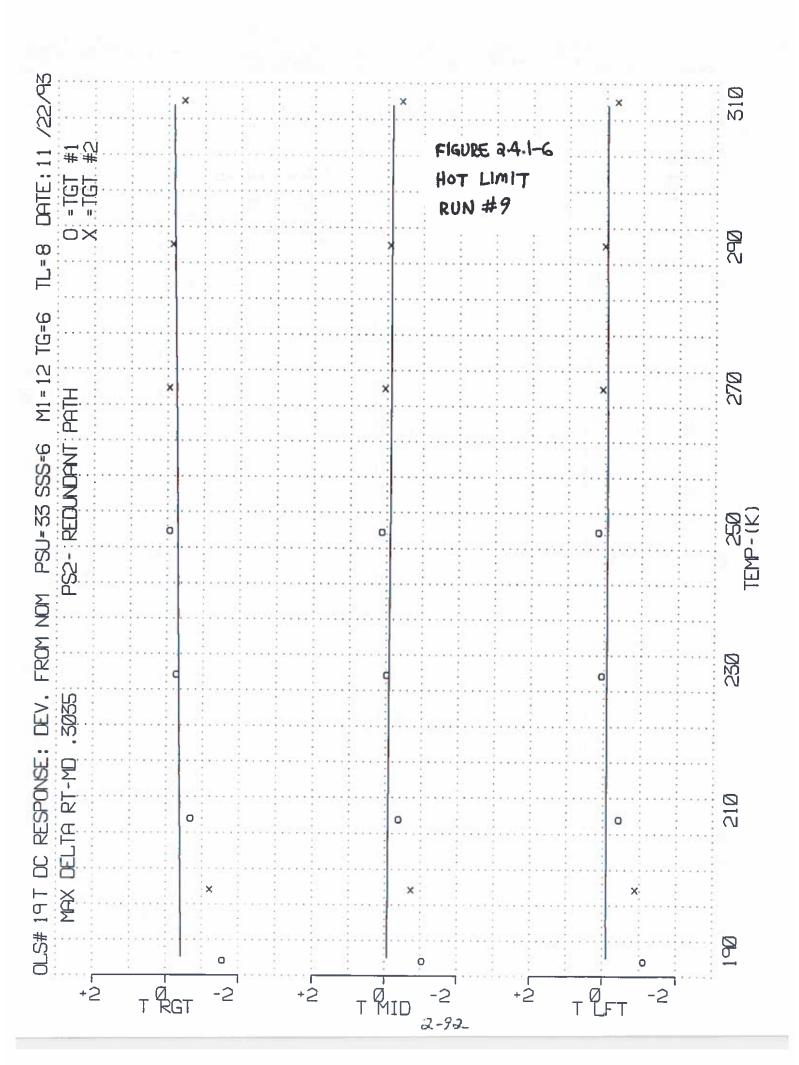

T LEVEL =8


V2 < T Clamp > = 1.94824


K9 <TL Step Size> = .924388


BEST STRAIGHT LINE EQUATION


	FP	(A)	FB	SP	(A)	SB
BSL SLOPE	0.0014	-	0.0008	0.0013	-	0.0014
BSL AT 190K <k></k>	0.02	(.12)	-0.10	0.05	(.19)	-0.14
BSL AT 210K <k></k>	0.05	(.13)	-0.08	0.08	(.19)	-0.11
BSL AT 310K <k></k>	0.18	(.18)	0.00	0.21	(.18)	0.03
RMS DEVIATION <k></k>	0.24	-	0.22	0.23	_	0.21
BSL AT 310K;						
190 AT OV <k></k>	0.18		0.03	0.20	-	0.08
% CHANGE FROM						
NOM GAIN	0.25	-	0.04	0.27	-	0.10
BIAS DIFF FROM						
NORMAL 190K <k></k>	0.18	-	-0.10	0.24	72.1	-0.11



2.4 RADIOMETRIC ACCURACY

2.4.1 T Channel Radiometric Accuracy (Cont'd)

2.4.1.1 Repeatability (3.2.1.1.4.1a)

The 1 sigma Repeatability of T Channel DC Response is 0.22 K compared to a 0.42 K one sigma specification maximum and therefore OLS #19 does meet this specification requirements.

ATTACHMENTS

Table 2.4.1.1-1 Repeatability Contributors

Table 2.4.1.1-2 Gain and Bias Variations with Temperature Change

Table 2.4.1.1-3 Target Crosstalk, T Clamp Leakage Data

TABLE 2.4.1.1-1

OLS #19

REPEATABILITY CONTRIBUTORS SUMMARY

ERROR SOURCE	ONE SIGMA ERROR (K.)
1. Diurnal M1 Temperature Change (4°C)	
A. Quantization of T Level Command	0.17
B. Inability to Compensate Actual Effect Exactly	0.65*
2. Temperature Change PSU <u>+</u> 4.5°C, SSS <u>+</u> 1°C	
A. Effect due to Gain Change	0.16*
B. Effect due to Bias Change	0.036*
3. T Clamp Shaper Compensation	0.08
4. T Clamp Leakage	0.091*
TOTAL RSS REPEATABILITY ERROR (°K)	0.222
SPECIFICATION LIMIT, .K, ONE SIGMA	0.42 MAXIMUM

*FROM TEST DATA (REDUCED)

Discussion of Repeatability Calculations

- 1. Diurnal MI Temperature Change
 - A. The effects of M1 temperature (more properly the foreoptics temperature) are a Repeatability error source. The foreoptics thermal time constant is short enough to permit significant diurnal temperature variations. The ability to compensate for foreoptics temperature using the T Level command greatly reduces this error but does not eliminate it. Although calculations enabling ground compensation smaller than the quantization of the T Level command are possible, it is herein assumed that they will not generally be made. Therefore an error is ascribed due to the T Level quantization as follows:
 - 0.294 °K RMS T Level Cmd. Quantization Error at 210 °K (1.02 ° x $1/\sqrt{12}$) x 0.564 RMS Temperature Linearity Effects over 210-310 °K dynamic range = 0.17 °K RMS error
 - B. The fact that foreoptics temperature effect cannot be accurately predicted by the single monitor of MI temperature means that in times of sharp transition the ability to compensate is impaired. It has been assumed that this error may be represented by a 1°C lag in MI temperature during the 1/3 of the orbit that sharp transistions occur. Therefore the inability to compensate the actual effect is ascribed the following error:

 $^{1 \}cdot C$ Lag in M1 Temperature \times 1/ $\sqrt{3}$ RMS Over total orbit

X 0.199 T Left T Mid T Right average sensitivity coefficient of video at 210K to M1 temperature change for OLS #19 (K factor)

x 0.564 Temperature Linearity Effects over dynamic range.

^{= 0.065 •} K RMS error

Discussion of Repeatability Calculations

Total T channel gain change with temperature may be broken down into two components as follows:

Total Gain
$$\Delta = [(PSU \Delta T) \times P_G] + [SSS \Delta T) \times S_G]$$

where: $P_G = PSU$ coefficient of gain, % per °C. $S_G = SSS$ coefficient of gain, % per °C.

Similarly for bias changes with temperature:

Total Bias
$$\Delta = [(PSU \Delta T) \times P_B] + [(SSS \Delta T) \times S_B]$$

where: $P_B = PSU$ coefficient of bias, °K per °C. $S_B = SSS$ coefficient of bias, °K per °C.

Data from two pairs of runs designated A and B, were used to solve these equations simultaneously:

Gain
$$\triangle$$
, Run $A = G_A = (T_{PA})(P_G) + (T_{SA})(S_G)$
Gain \triangle , Run $B = G_B = (T_{PB})(P_G) + (T_{SB})(S_G)$
Bias \triangle , Run $A = B_A = (T_{PA})(P_B) + (T_{SA})(G_B)$
Bias \triangle , Run $B = B_B = (T_{PB})(P_B) + (T_{SB})(S_B)$
where:
$$G = Total \ Gain \ change \ over \ temperature$$

$$B = Total \ Bias \ change \ over \ temperature$$

$$T_P = PSU \ Temperature \ change$$

$$T_S = SSS \ Temperature \ change$$

Solved simultaneously for the temperature sensitivity factors, these equations can be reduced to the following:

$$S_{G} = \frac{(T_{PA})(G_{B}) - (T_{PB})(G_{A})}{(T_{PA})(T_{SB}) - (T_{PB})(T_{SA})}$$

$$P_{G} = \frac{G_{A} - (T_{SA})(S_{G})}{T_{PA}}$$

$$S_{B} = \frac{(T_{PA})(B_{B}) - (T_{PB})(B_{A})}{(T_{PA})(T_{SB}) - (T_{PB})(T_{SA})}$$

$$P_{B} = \frac{B_{A} - (T_{SA})(S_{B})}{T_{PA}}$$

$$\frac{T_{PA}}{2-96}$$

2. SSS and PSU Temperature Change: Effect On Gain Change

The effects of SSS and PSU temperature change on gains were determined from parametric analysis of the four runs in Table 2.4.1.1-2. Solving simultaneous equations yielded sensitivity coefficients of gain change for both SSS and PSU temperature change. Temperature data from 5D-2 systems currently on-orbit indicates that the worst case SSS temperature variations are 1°C while worst case PSU temperature variations are 4.5°C. Using the worst-case factors yields:

S_G = -.023% Gain change per degree SSS change x 1°C temperature change x .31°K RMS over 210K to 310K range x 1/√3 for uniform temperature distribution

x 1// 3 for uniform temperature distribution = -.004.

P_G =-.019% Gain change per degree PSU change x 4.5° temperature change x .31°K RMS over 210K to 310K range

 $\times 1/\sqrt{3}$ for uniform temperature distribution =-.015.

RSS'ing these two contributors yields 0.016 degree total.

 SSS and PSU Temperature Change, Effect On Bias Change From Table 2.4.1.1-2:

 $S_B = -.024$ deg Bias change per degree SSS change x 1° temperature change

x 0.564 RMS Temperature Linearization Effects, 210K to 310K

x $1/\sqrt{3}$ for uniform temperature distribution = -.008.

 $P_{\rm B}$ = -.024 deg Bias change per degree PSU change

x 4.5° temperature change

x 0.564 RMS Temperature Linearization Effects, 210K to 310K

 $\times 1/\sqrt{3}$ for uniform temperature distribution = -.035.

RSS'ing these two contributors yields 0.036 degree total.

4. T Clamp Shaper Compensation

The SSS temperature changes throughout each orbit are expected to cause a one sigma error of 0.146°K at 210K due to the compensation for T clamp temperature variation from 228K to 253K. This times the 0.564 RMS Temperature Linearitation Effect over the dynamic range equals 0.08°K RMS error.

5. T Clamp Leakage

An along scan variation (ASV) effect may be caused by some of the scene radiance being viewed at the time of T clamp during the overscan period getting into the reference T Clamp value. This can happen if the T detector sensitivity extends slightly beyond the boundaries of M4' during the clamp time. The test performed for leakage is to view one target at 210°K during active scan while the other target (which is at the T Clamp angle) is varied over the 210° to 310°K dynamic range. This data is presented in Table 2.4.1.1-3. The effect on the response to the active scan target is attributed to the T clamp optical leakage.

Using the OLS #19 T data from Table 2.4.1.1-3, the T clamp leakage contribution can be calculated as follows:

T clamp leakage ratio (LR) =
$$100\% \times \Delta T \times \frac{\frac{\partial P}{\Delta T}}{\Delta P}$$

= $\Delta T \times .50552\%$

This calculation is performed in the MODE 4 data reduction of T121T221S. The ratio calculated is:

0.107% T LEFT 0.068% T RIGHT

The peak error from T clamp leakage (due to the 310 background) can be calculated as follows:

peak error = LR x
$$\Delta N$$
 x $(\frac{\partial P^{-1}}{\Delta T_{210}})$ -1

$$= \Delta T \times \frac{\Delta N}{\Delta P} \times \frac{\frac{\partial P}{\Delta T}}{\frac{\partial P}{\Delta T}} = \Delta T \times \frac{\Delta N}{\Delta P} \times \frac{\frac{\partial P}{\Delta T}}{210}$$

= $\Delta T \times 0.8156 \times 1.0788$ = $\Delta T \times 0.880$

where:

ΔP = Difference in radiance between 210° and 310°K

 $= 14.395E-4 \text{ w cm}^{-2} \text{ sr}^{-1}$

and: ΔN = Difference in radiance between 240° and 310°K

 $\frac{\partial P}{\Delta T_{210}} = \text{slope of radiance curve at } 210 \cdot K = 6.7452 \text{ E-6}$

 $\frac{\partial P}{\Delta T}$ = slope of radiance curve at 215°K = 7.415 E-6

ΔT = measured change in response to 210° target as the background is varied from 210° to 310°K.

RMS ERROR = PEAK ERROR

x 0.7605 for RMS distribution of leakage radiance over dynamic

x 0.564 RMS Temperature Linearization Effect

FROM MODE 4 Data reduction:

Calculated RMS leakage error = 0.091·K T LEFT = 0.058·K T RIGHT

The worst-case contribution to repeatability error by T-clamp leakage is therefore

0.091 · K RMS.

2-99

range.

.

0LS #19

GAIN AND BIAS VARIATIONS WITH TEMPERATURE CHANGE (MI TEMP CORRECTED TO +12·C OR -8·C) (FROM UNCORRECTED DATA TABLE)

	BIAS CHG. @ 190•K (•K)	1.61	0.83	0.78 B _A	-0.44	-0.20	-0.24 B _B	-0.0236*
T LFT								
	% GAIN DELTA (%)	1.84	1.20	0.64 GA	0.01	0.22	-0.21 G ₈	-0.0226
T MID	BIAS CHG. @ 190-K (-K)	1.62	1.04	0.58 B _A	-0.47	-0.41	-0.06 B _B	0.0112
I L	% GAIN DELTA (%)	1.45	0.87	0.58 G _A	-0.22	-0.02	-0.20 6 ₈	-0.0228*
RGT	BIAS CHG. @ 190•K (•K)	1.21	0.66	0.55 B _A	-1.10	-0.97	-0.13 B _B	-0.0071*
1	% GAIN DELTA (%)	1.40	0.89	0.51 GA	0.05	0.19	-0.14 G ₈	-0.0113
	PSU TEMP	3.8	32.8	-29.0 T _{PA}	37.9	32.6	5.3 T _{PB}	S _G (%/·C) S _B (%/·C) P _G (%/·C)
3-77	SSS TEMP	2.5	6.2	-3.7 T _{SA}	11.0	6.2	4.8 TsB	SSS: PSU:
		RUN 8 COLD LIMIT	RUN 2 COLD OPTIC LIMIT	RUN 8- RUN 2	RUN 5 HOT SOAK #1	RUN 3 HOT OPTIC LIMIT	RUN 5 - RUN 3	Calculated Sensitivity Factors
			M1 = -8 C (Run A)	1		M1=+12·C (Run B)		Calcu Sensi Facto

*WORST CASE VALUES

2-100

BVS 2759

JTS23.rc0

TABLE 2.4.1.1-3
OLS #19
TARGET CROSSTALK, T CLAMP LEAKAGE DATA*

SSS = +7° M1 = -8°

F 11 -11 11	T RIGHT	T MID	T CPL	T CPR	T LEFT	
T1 210· [T2 @ 310·] (T121T231D)	-0.70	-0.26	-0.43	-0.15	-0.20	11/04/93
Difference, △T	0.21	0.02	0.28	0.24	0.36	
T1 210· [T2 @ 210·]	-0.49	-0.24	-0.71	-0.39	-0.56	11/03/93
Worst Case Data From T121T221S.ST Mode 4 Data Reduction:		-		= I	11	
T clamp leakage ra Peak leakage error RMS leakage error	· at 210		0.107% 0.187•K 0.091•K	0.068% 0.119•K 0.058•K		i

^{*}Data is FP Deviation in •K

2.4 Radiometric Accuracy

2.4.1 T Channel Radiometric Accuracy (Cont'd)

2.4.1.2 Stability (3.2.1.1.4.1b)

The T Channel Radiometric Accuracy (Stability) analysis in the OLS 5D-3 System Summary Report Paragraph 3.5.1.2, predicts 0.61°K 1 sigma error in stability compared to the 0.8°K maximum specification requirement. This calculation is applicable to all 5D-3 systems with 190-310°K total range.

ATTACHMENTS

Table 2.4.1.2-1 Stability Contributors Summary

Table 2.4.1.2-2 Change in BSL 210°, 310°K Points Between Runs

Table 2.4.1.2-3 Change in 210°, 310° Output Deviation From
Nominal (°K) between Power Supply 1 and Power
Supply 2

TABLE 2.4.1.2-1

STABILITY CONTRIBUTORS SUMMARY

			ONE SIGMA ERROR (-K)
1.	Shaped Bias		
	a) Open Loop Mirror Emissivity	0.1	
	b) T Clamp Shaper Compensation - Temperature	0.23	
	- Age	0.17	
	RSS Total	0.30°K	
	X RMS Temperature Linearization Effect = RMS Shaped Bias Errors	0.564	0.17°K
2.	<u>Bias</u>		
	a) Preshaper Gain - Inner Stage Temperature	0.28	
	- Bias Current	0.24	
	- Amplifiers	0.22	
	b) Post Shaper DC Drift	0.12	
	RSS Total = RMS Bias Error		0.45°K
3.	<u>Gain</u>		
	Postshaper Gain Changes - Amplifier		
	over the 210-310K range, •K RMS Error		0.38
	TOTAL RSS Stability Error (Total Dynamic Range)		0.61
	Stability Error Specification (°K, 1 Sigma)		0.80 Maximum

Discussion of Stability Errors

The experimentally derived RMS change of the BSL(s) between runs was calculated to be 0.09°K, 0.05°K and 0.07°K for TRGT, TMID and TLEFT respectively. The two runs used were Run #5 and run #7. The results verify the analytical estimate of the stability over time intervals greater than one day. This data is tabulated in Table 2.4.1.2-2.

As an additional check of stability, the Fine-Primary outputs of the three segments as a deviation from nominal (*K) at 210° and 310° were compared using power supply 1 data of TDCRM3B.ST and power supply 2 data of 6X2X3A.ST. (Both from Run #8). This data is tabulated in Table 2.4.1.2-3. The deltas were calculated and RMS'd over the temperature range. The results are comparable to the "Change Between Runs" data.

TABLE 2.4.1.2-2

OLS #19

CHANGE IN BSL 210, 310K POINTS BETWEEN RUNS

SSS = 12°C, M1 = 15°C

	TG		T	RGT	T i	1ID	_ T	LFT
	R/L	TL	210	310	210	310	210	310
T121T231B 11/07/93	6/6	8	-0.76	-0.23	-0.23	-0.23	-0.30	-0.10
T121T231B 11/11/93	6/6	8	-0.68	-0.33	-0.18	-0.28	-0.24	-0.17
Change Between Runs			0.08	0.10	0.05	0.05	0.06	0.07
RMS Change			0.09	K	0.05	K	0.07	7 • K

TABLE 2.4.1.2-3

OLS #19

T CHANNEL DC RESPONSE

DIFFERENCE BETWEEN POWER SUPPLIES 1 and 2

From Cold Limit (Run #8), SSS = $+3 \cdot C$, M1 = $-8 \cdot C$

	RIG	HT	M:	MID		LEFT	
X 1 i	TGT-1 210•K	TGT-2 310•K	TGT-1 210•	TGT-2 310°	TGT-1 210•	TGT-2 310•	
FP DEV [K] Power Supply 1 TDCRM3B	0.11	0.86	0.40	0.98	0.17	1.16	
FP DEV [K] Power Supply 2 6X2X3A	-0.07	0.65	0.29	0.88	0.08	1.05	
Change •K	0.18	0.21	0.11	0.10	0.09	0.11	
RMS •K	0.2	20	0	.11	0,	. 10	

2.4 RADIOMETRIC ACCURACY

2.4.1 T Channel Radiometric Accuracy (Cont'd)

2.4.1.3 <u>Fixed Deviations</u> (3.2.1.1.4.1c)

The Fixed deviations for OLS #19 are 0.35°K, 1 sigma, compared to the 0.6°K specification maximum. The calibrateable portion of the fixed deviations is 0.27°K RMS compared to the 0.4°K RMS specification maximum. The Fixed deviation calibration for separate detector segments is 0.41°K (worst case) compared to the 1°K spec. maximum. The maximum along scan variation was 0.12°K RMS for TF (Right) and 0.10°K RMS for TS compared to the 0.2°K RMS specification maximum.

ATTACHMENTS

Table 2.4.1.3-1	Fixed Deviations Contributors
Table 2.4.1.3-2	T Shaper Error Tabulation
Table 2.4.1.3-3	BSL Calibration Equations
Table 2.4.1.3-4	Fixed Deviation Calibration Differences for
	Separate Segments
Table 2.4.1.3-5	Along Scan Variation (265° to 310°K) within a
	Separate Segments
Table 2.4.1.3-6	Cone (Inner Stage) Patch Temp EST
Table 2.4.1.3-7	Cone Cooler Outer Stage Temp EST
Figure 2.4.1.3-1	5D3 Nominal Shaper Curve
Figure 2.4.1.3-2	Along Scan Variation, T Right, MI = 12°C
Figure 2.4.1.3-3	Along Scan Variation, T Mid, M1 = 12°C
Figure 2.4.1.3-4	Along Scan Variation, T Left, M1 = 12°C
Figure 2.4.1.3-5	Along Scan Variation, T Right, M1 = -8°C
Figure 2.4.1.3-6	Along Scan Variation, T MID, M1 = -8°C
Figure 2.4.1.3-7	Along Scan Variation, T Left, M1 = -8°C
Figure 2.4.1.3-8	Along Scan Variation, T Auto M1 = 12°C
Figure 2.4.1.3-9	Along Scan Variation, T Auto M1 = -8°C

TABLE 2.4.1.3-1

OLS #19

FIXED DEVIATION CONTRIBUTORS

DEVIATION SOURCE	ONE SIGMA ERROR (•K)
1. Foreoptics Mirror Emissivity	0.11*
2. T Clamp Shaper Compensation	0.09
3. Transfer Function	
A. Non-Linearity	0.27* 0.4°K Spec Max
B. Shaper Components Variation	0.10
C. Detector Spectrum Variation (included in 3A)	
4. Test Targets	
A. Temperature	0.10
B. Emissivity	0.10
C. Repeatability	0.03*
TOTAL (RSS) FIXED DEVIATION	0.35
FIXED DEV. SPECIFICATION LIMIT, .K ONE SIGMA	0.60 Maximum
* FROM TEST DATA ANALYSIS	
5. Fixed Deviation BSL Calibrations Match for Separate Segments (Worst Case) DATA 0.41	SPEC MAX 1.0°K
6. Along Scan Varations within a segment (265° to 310°K) Worst Case	RMS 0.2°K RMS

Discussion of Fixed Deviation Tests and Calculations

1. Foreoptics Mirror Emissivity

The foreoptics mirror emissivity is a source of Fixed deviations as well as of Repeatability and Stability deviations. The correction in operation is made on M1 temperature only; whereas the entire foreoptics causes the offset phenomena. The ground calibration is made in the thermal vacuum chamber, where M1 is cooled radiatively via a cold tunnel, which fills the M1 view beyond the optical field of view of the system. Thus the foreoptics temperature distribution in the chamber differs somewhat from operation in space, especially in that M2 is colder in the chamber. It is not possible to determine accurately this effect based upon present knowledge. It is therefore assumed that it is equivalent to a 1°C difference in M1 temperature, or about 0.199°K at 210° using the actual OLS #19 M1 coefficient (K factor). The RMS Temperature Linearization Effect, 0.564, transforms this to a 0.11°K RMS contribution to fixed deviation.

2. T Clamp Shaper Compensation

The T Clamp shaper compensation contribution arises as follows. If the T Clamp emissivity were initially only 0.98 rather than the 0.995 used to calculate the compensation for T Clamp temperature, the error at 242°K would be 0.70°K. Although this error would be compensated for when the T channel adjustments were made, a change in T Clamp temperature to 256°K or 230°K would result in an error of 0.78°K, producing an uncompensated error of 0.08°K.

- 3. Transfer Function
- The departure of the T channel radiometric transfer function from a A. linear relationship is not an error as such because it is known and compensation can be made for it. However, this type of deviation is included within the constraints of the Fixed deviation portion of the T channel radiometric accuracy spec. The nominal T Channel non-linear transfer function (shaper) error is tabulated in Table 2.4.1.3-2 and plotted in Figure 2.4.1.3-1. The nominal shaper error is 0.13 K RMS. This calculation is made with the 5D-3 shaper, which is also used on OLS #19. The worst-case reduced test data (from Tables 2.4.1-4,5 & 6) RMS Deviations of the points from the BSL for OLS #19, are 0.24°K for T Right (Fine Backup & Smooth Primary), 0.22°K for T MID (Fine Primary and Smooth Primary) and 0.24°K for T Left (Fine Primary). The analytic value, (0.13 · K RMS) and the worst-case test value of 0.24 K are RSS'ed to become 0.27 K RMS for this Fixed deviation source versus the 0.4.K maximum spec allowance for the calibrateable portion of the Fixed deviations.
- B. Departure of shaper components from design nominal values may cause additional peak errors of 0.25°K and are assigned a one sigma error of 0.1°K. These deviations would not be included in the measured deviation, because the data points are not close enough together to adequately detect them.
- C. The T detector spectrum difference from unit to unit is included in the calibration data and is therefore included in 3A, the non-linearity of transfer function.

4. Test Targets

The deviation of the reference test target indicated blackbody temperature from absolute is the result of contributions from three Fixed deviation sources.

- A. The measurement of the averaged target temperature using the 5 thermocouples immersed in the target baseplate is subject to the accuracy of the PQL/Block V Thermocouple Aquisition and Control System calibrated per procedure MCS0116801B. A review of the calibration procedure and the equipment used has led to ascribing 0.1°K RMS to these sources.
- B. The actual effective blackbody temperature of the target also deviates from that measured because of differing emissivity from that assumed and because the "true" radient temperature differs from the measured temperature using the thermocouples. The effective emissivity is a combination of true emissivity (which is better than 0.996 according to Eppley) and reflectance of up to 0.004. An average emissivity of 0.998 is corrected for along with the thermocouple calibration. This source of deviation has been assigned 0.1°K RMS.
- C. Actual measurements using OLS systems 12 thru 17 of the two Eppley IR Reference test targets over the 210° to 310°K range reveal small differences between the targets. Effective with OLS 18 and up these differences are no longer measured. The values measured for OLS 12 thru OLS 17 are averaged to obtain a value of 0.03°K RMS for this error source.

Fixed Deviation Calibrations for Separate Segments

The calibrations are represented by the best straight line (BSL) equations for the separate segments. The BSL deviation expressions (from ideal), in y = mx + b form for the segments are tabulated in Table 2.4.1.3-3. In T Smooth the Right and Left detector segments are averaged and used across the entire scan line.

In order to determine the differences in calibrations for separate segments, (for comparison to the specification) the T Fine BSL deviation equations of Table 2.4.1.3-3 were evaluated at 210 K and 310 K. The 3 possible segment differences were then calculated. Also, the worst-case deviations between segments were taken from the Best Straight Line Plots (Figures 2.4.1-1 thru 2.4.1-6). These results are tabulated in Table 2.4.1.3-4. The calibration differences for separate segments are within the 1 K maximum spec throughout the dynamic range of 210 to 310K for OLS #19.

Along Scan Variation (265.K to 310.K) Within a Segment

The Along Scan Variation (ASV) in T DC Response is considered to be a Fixed deviation, since as a function of scan angle it does not vary as a function of time per se. Figures 2.4.1.3-2, 3, 4, 5, 6, 7, 8 and 9 show the deviations along-scan vs. surface distance (nmi/100) for T RGT, T MID, TLFT, and T AUTO. The vertical scale factor is $1.0\,^{\circ}$ K per cm. Four figures are for M1 = $-8\,^{\circ}$ c and four are for M1 = $+12\,^{\circ}$ C. The computer printed number to the right of each curve is the computed RMS deviation in millidegrees K for the associated ASV plot. the RMS ASV values are only printed for the target temperatures above $265\,^{\circ}$ K, i.e., the $270\,^{\circ}$ and $310\,^{\circ}$ K plots.

The T DC response BSL calibrations are taken using test scan angles of -50° (-600nmi) for T LFT, +50° (+600nmi) for T RGT, and +0° (0 nmi) for T MID.

OLS #19 has some ASV, but is within spec. The worst case (max) ASV RMS value within a segment for OLS #19 was 0.12 K and is entered in Table 2.4.1.3-5 to compare with the specification limit.

TABLE 2.4.1.3-2

T SHAPER ERROR LIST

The 190 to 310 • K 5D3 T Shaper used for OLS #13 and up has 6 straight line segments of decreasing slope and 5 (inflections) diode break points. The significant features in the shaper curve are tabulated below:

(° K)	ERROR (•K)	REMARKS	
190 195 201.5	-0.38 0	End point adjusted to be an Idlant slope is parallel to Radia	
205 210	+0.26	1st diode cut-in	
215 220.5	-0.18 0	2nd slope is parallel to Radia	ance (Smooth) Curve
224 228.5	+0.20	2nd diode cut-in	
235 240.5	-0.20 0	3rd slope is parallel to Radia	ance Curve
245 251.5	+0.19 0	3rd diode cut-in	
257 263	-0.21 0	4th slope is parallel to Radia	ince Curve
267 272	+0.165 0	4th diode cut-in	
279 284.5	-0.195 0	5th slope is parallel to Radia	ince Curve
291 296	+0.16 0	5th diode cut-in	
303 310	-0.13 +0.023	6th slope is parallel to Radia	ance Curve

The largest plus and minus errors in the $210K-310\,^{\circ}K$ range are $+0.20\,^{\circ}$ and $-0.21\,^{\circ}K$ respectively.

The standard deviation = 0.13 K RMS over the 210 to 310 K dynamic range.

TABLE 2.4.1.3-3

OLS #19

BSL CALIBRATION EQUATIONS

(From Tables 2.4.1-4,5,6)

T FINE (Pr	rimary)		EVA <u>@ 210∙</u>	LUATED @ 310•
T-Right:	Error = 0.0030 (T-190) - 0.42	(• K)	-0.360	-0.060
T-Mid:	Error = 0.0001 (T-190) + 0.00	(°K)	0.002	0.012
T-Left:	Error = 0.0014 (T-190) + 0.02	(°K)	0.048	0.188
T FINE (Re	dundant)			
T-Right:	Error = 0.0033 (T-190) - 0.52	(°K)	-0.454	-0.124
T-Mid:	Error =-0.0001 (T-190) - 0.10	(°K)	-0.102	-0.112
T-Left:	Error = 0.0008 (T-190) - 0.10	(°K)	-0.084	-0.004
T SMOOTH (Primary -	Error = 0.0001 (T-190) + 0.02 SP MID)	(°K)	0.022	0.032
T SMOOTH	Error =-0.0002 (T-190) - 0.06	(°K)	-0.064	-0.084
(Redundant	ר סט ויון סכ			. = •

TABLE 2.4.1.3-4

OLS #19

FIXED DEVIATION CALIBRATION DIFFERENCES FOR SEPARATE SEGMENTS

Calculated from BSL Equations in Table 2.4.1.3-3:

	DIFFERENCE AT 210°K (°K)	DIFFERENCE AT 310K (•K)	SPECIFICATION (MAX)
PRIMARY			
T Mid to T Right	0.36	0.07	1°K
T Mid to T Left	0.05	0.18	1•K
T Right to T Left	0.40	0.25	1 • K
REDUNDANT			
T Mid to T Right	0.35	0.01	1•K
T Mid to T Left	0.02	0.11	1 ° K
T Right to T Left	0.37	0.12	1•K

Worst Case Differences from Best Straight Line Plots (Figures 2.4.1-1 thru 2.4.1-6):

RUN #	PRIMARY PATH	REDUNDANT PATH	SPEC. MAX.
1	0.34 LFT-RGT	0.26 LFT-RGT	1∘K
8	0.34 LFT-RGT	0.26 LFT-RGT	1∘K
9	*0.41 LFT-RGT	0.31 LFT-RGT	1∘K

*WORST-CASE DATA

TABLE 2.4.1.3-5

OLS #19

ALONG SCAN VARIATION (265 K to 310 K) WITHIN A SEGMENT

(From ASV Graphs)

	ONE SIGMA	SPEC
T-FINE	ERROR (*K RMS)	LIMIT (· K RMS)
T-Left Segment	0.109	0.2
T-Mid (Sum) Segment	0.101	0.2
T-Right Segment	0.120	0.2
T-SMOOTH		
T-Sum	0.101	0.2

TABLE 2.4.1.3-6

CONE COOLER S/N 031

THERMISTOR S/N KC-55

OLS-19

CONE (INNER STAGE) PATCH TEMP. EST

TEMPERATURE •K	PATCH EST, VOLTS	
95	6.081	
96		
97	5.649	
98	5.251	
	4.884	
99	4.545	
100	4.232	
101	3.943	
102	3.676	
103	3.430	
104	3.202	
105	2.992	
106	2.797	
107	2.617	
108	2.450	
109	2.295	
110	2.152	
111	2.019	
112	1.896	
113	1.781	
114	1.675	
115	1.576	
116	1.483	
117	1.398	
118	1.318	
119	1.243	
120	1.174	
121	1.174	
122		
123	1.048	
124	0.991	
125	0.938	
123	0.889	

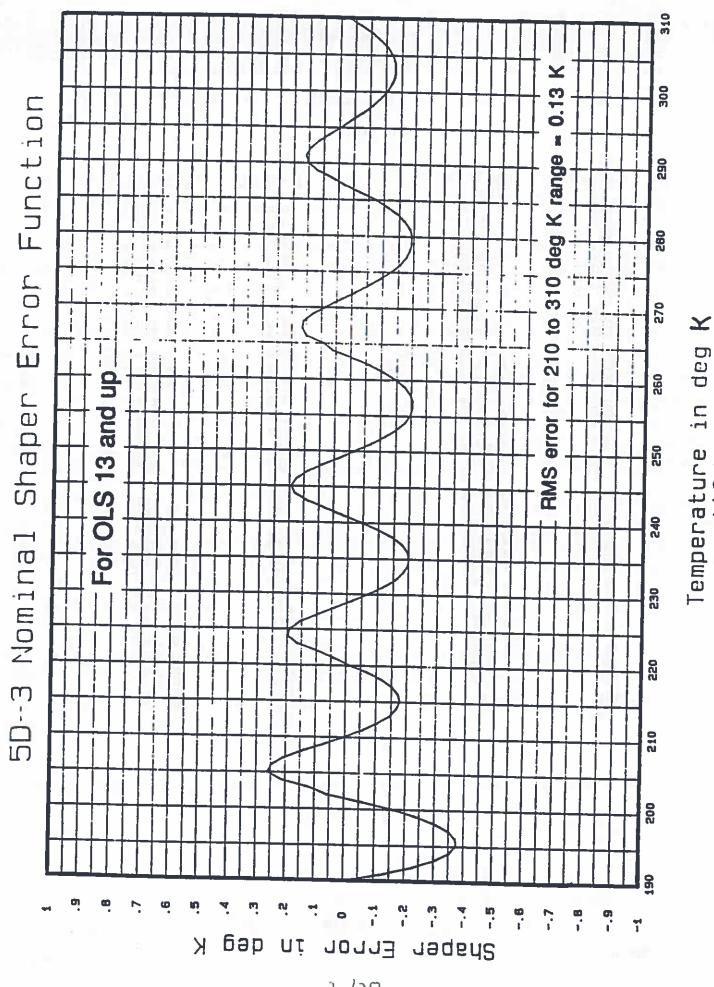
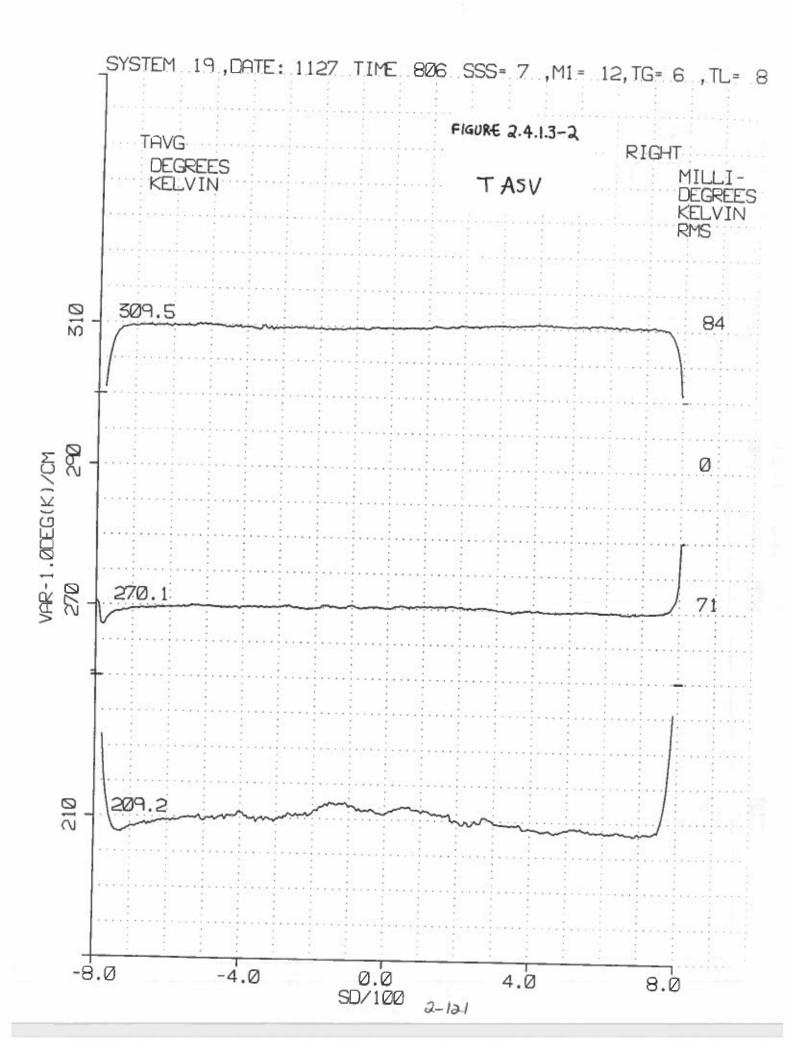
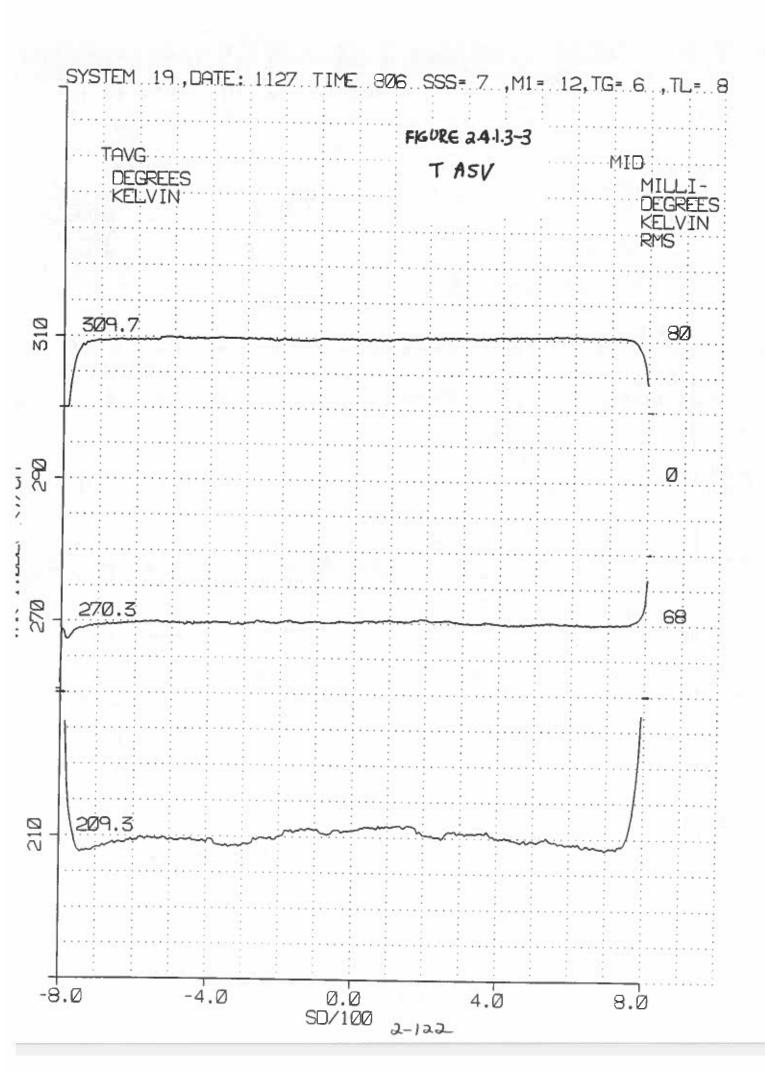
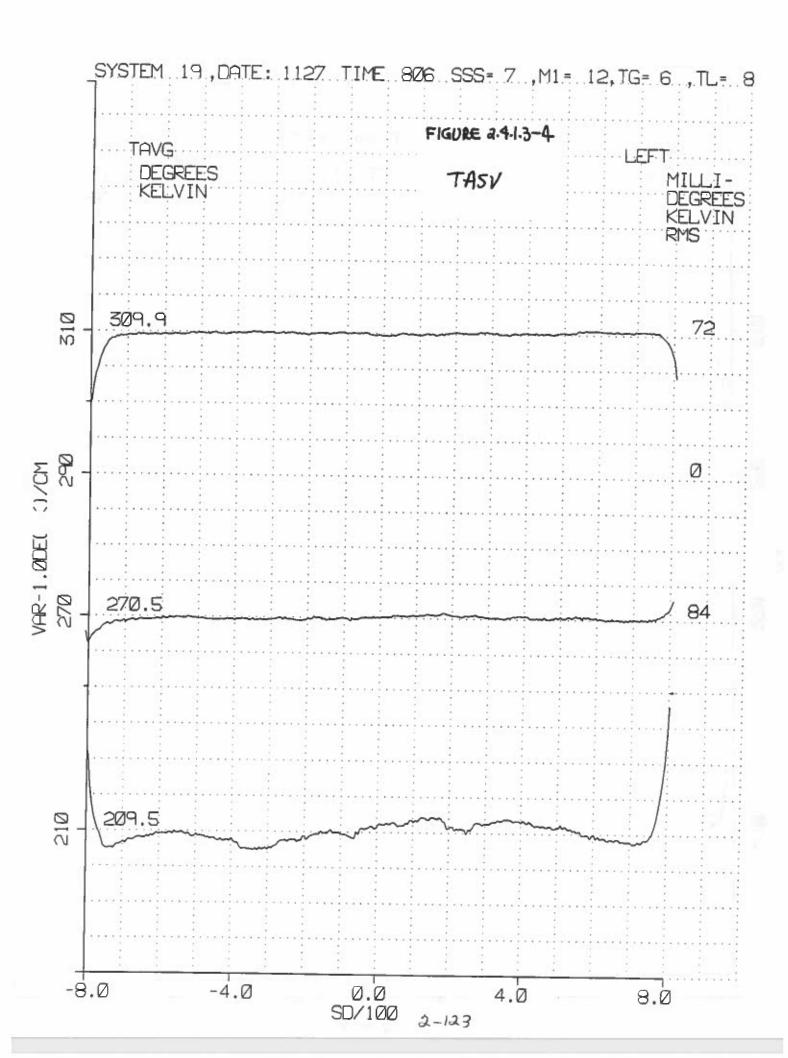
TABLE 2.4.1.3-7

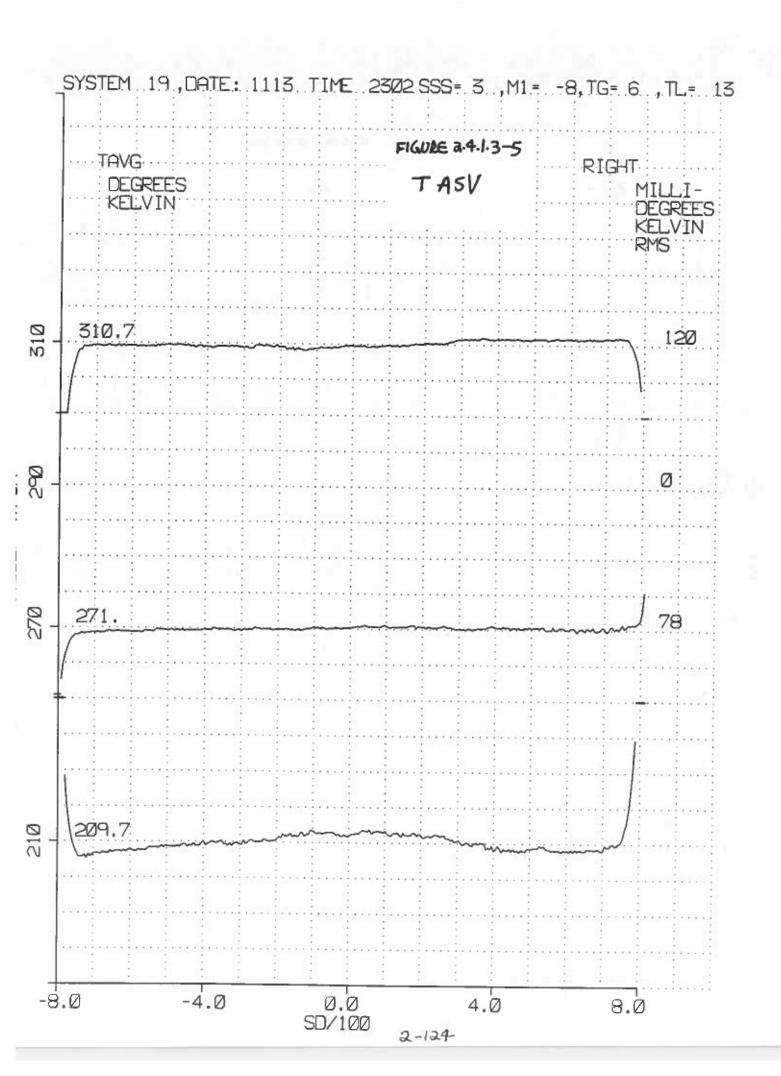
CONE COOLER OUTER STAGE TEMP EST

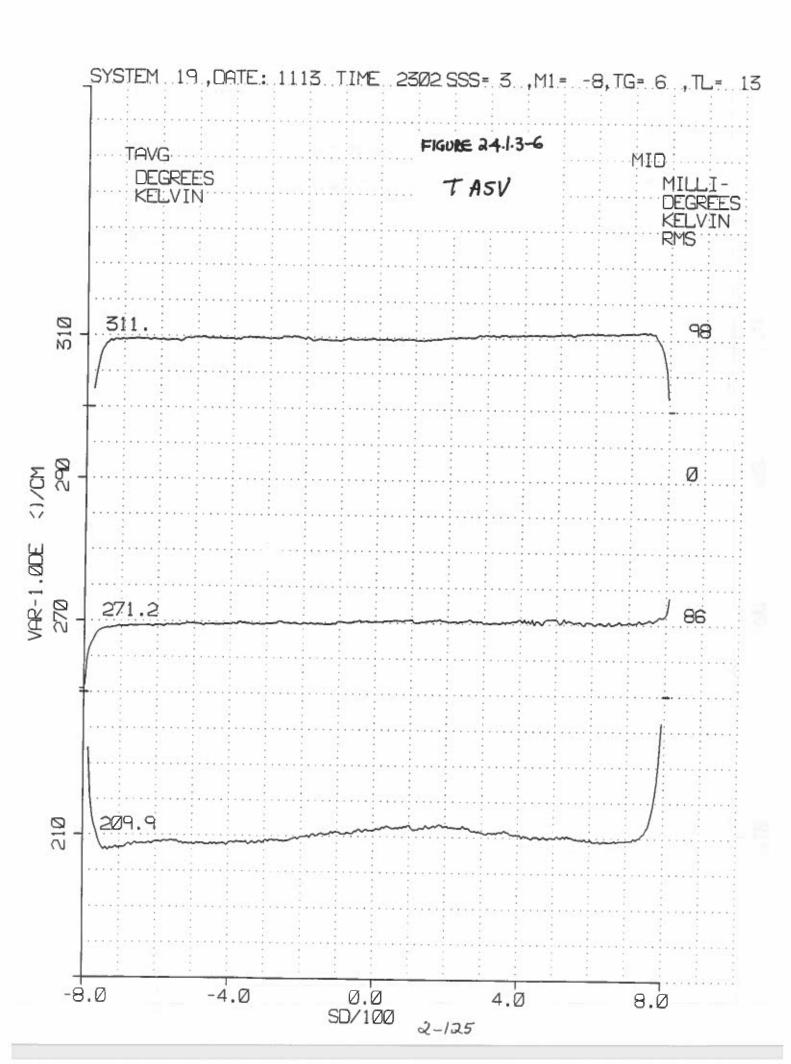
OLS #19

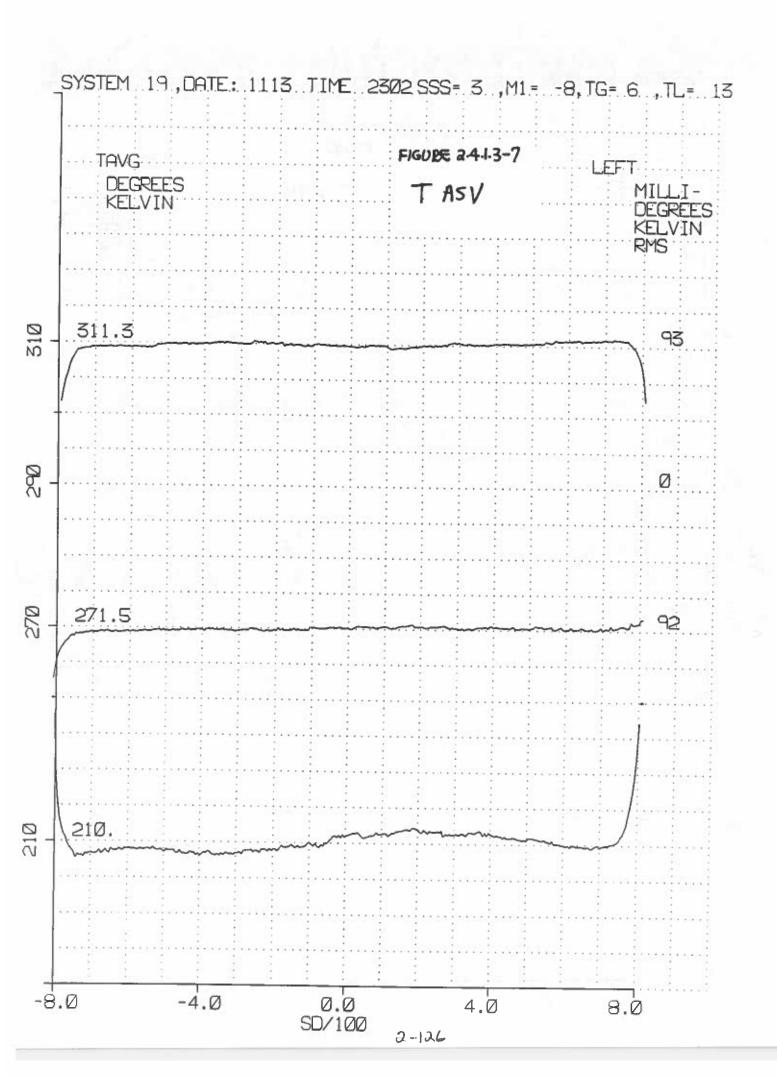
T CONE TEMP EST (EST #33)

T (DEC II)			
T (DEG K)	EST VOLTS	T (DEG K)	EST VOLTS
158	4.8221	194	4.1282
159	4.8181	196	4.0328
160	4.8136	198	3.93
161	4.8088	200	3.8195
162	4.8035	202	3.7016
163	4.7978	204	3.5769
164	4.7915	206	3.4468
165	4.7848	208	3.3115
166	4.7775	210	
167	4.7695	212	3.1719
168	4.7609	214	3.0292
169	4.7515		2.8844
170	4.7414	216	2.7386
171	4.7306	218	2.5924
172	4.7188	220	2.4475
173	4.7063	222	2.305
174	4.6926	224	2.1659
175	4.678	226	2.0302
176	4.6622	228	1.8995
177	4.6454	230	1.7735
178		235	1.4832
179	4.6273	240	1.2308
180	4.608	245	1.0159
181	4.5874	250	0.8359
182	4.5654	255	0.6873
	4.5418	260	0.5650
183	4.517	265	0.4653
184	4.4904	270	0.3842
185	4.4622	275	0.3182
186	4.4323	280	0.2646
187	4.4008	285	0.2207
188	4.3673	290	0.1852
189	4.3322	295	0.1560
190	4.2951	300	0.1320
192	4.2156	305	0.1123

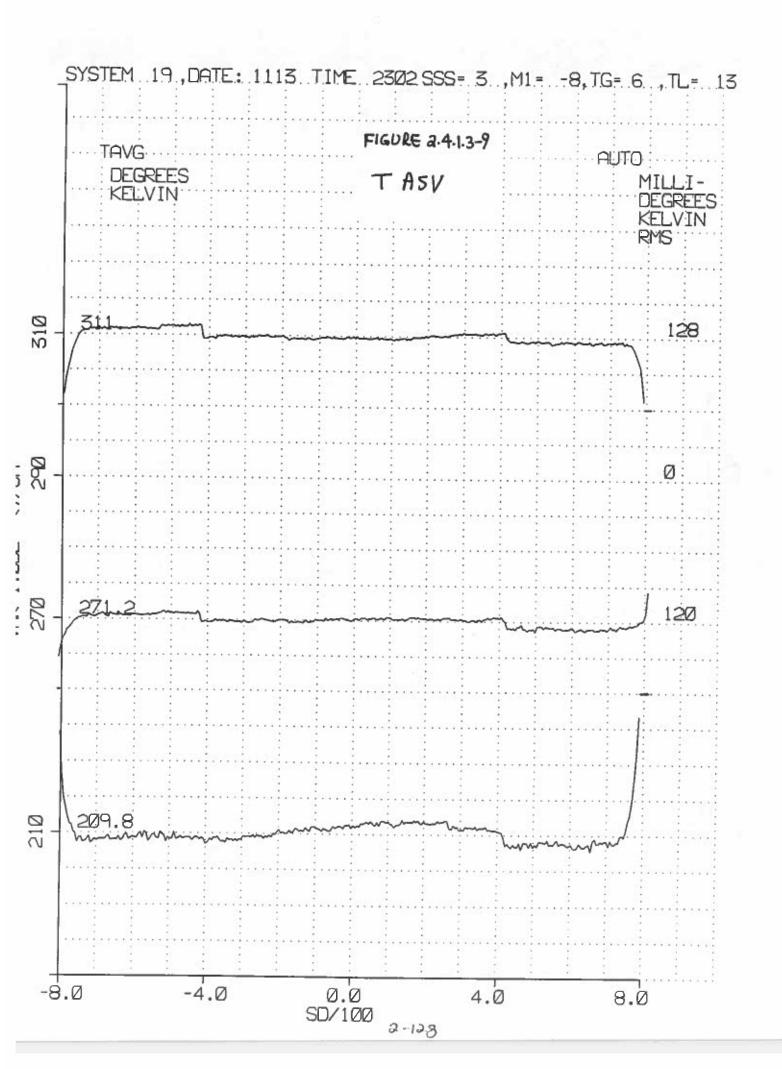






FIGURE 2.4.1.3-1


2-120







2.4 Radiometric Accuracy (Cont'd)

2.4.2 Daytime Radiometric Accuracy (3.2.1.1.4.2)

OLS #19 achieved the 7% absolute radiance requirement by setting the HRD channel gain as shown on the L channel DC Response plot, using the calibrated light source (VULS).

The analysis of the calibration accuracy and the L-Day channel stability show within-specification performance. The gain ratios (PMH/PML, PML/HRD, and PMH/HRD) were measured using the VULS during Acceptance Test in test 6x2x1.ST, and vary less than 1.06% from the average of the ratios. The gain ratios measured in test 6x2x2.ST using a less accurate test method show greater variation.

The plot of L DC Response contains the calculated sensor switch points, S(x), and relative gains P(X), which are stored in the OLS Constants Memory page zero, locations 39H through 3FH. P(2) and S(2) represent the bypass of the PMT 1/9 mode, which is not usually implemented on orbit.

Three factors must be taken into account in modifying the nominal value of PO for OLS 19. First, the initial HRD adjustment could not achieve the desired output voltage. The setting obtained was 1.924 dB less than desired. Next, the addition of 2 shims to the HRD/Preamp interface caused an additional 0.599 dB loss in signal output.

OLS #19 exhibited 0.896dB drop in transmission from room temperature to +5°C. Thus P(0) must be reset to 6.0 (nom) + 0.896 + 0.599 = 9.419 dB. Rounding off to the nearest 1/8 dB gives 9.375dB as the new setting for P(0).

P1 is derived using the PMT LO/HRD average gain value of 49.07 dB with a compensation for the HRD Loss and PMT Gain Ratios with temperature from the test data as plotted in figure 2.4.2-2 and converted to dB of 0.896 dB and 0.582 dB, respectively. The P1 value is 50.07 + 0.896 + 0.582 = 51.48 db (rounded to nearest 1/8th dB = 51.50).

Since the PMT 1/9 mode is currently unused, P2=OdB.

P3 is given the PMT HI/LO average gain ratio of 29.74 dB

or 29.75 dB after rounding.

ATTACHMENT: OLS #19 L Channel DC Response Plot

Table 2.4.2-1 OLS #19 DC Response Stability

Table 2.4.2-2 OLS #19 PMT/HRD DC Response vs. SSS Temp.

OLS19 L CHANNEL DC RESPONSE

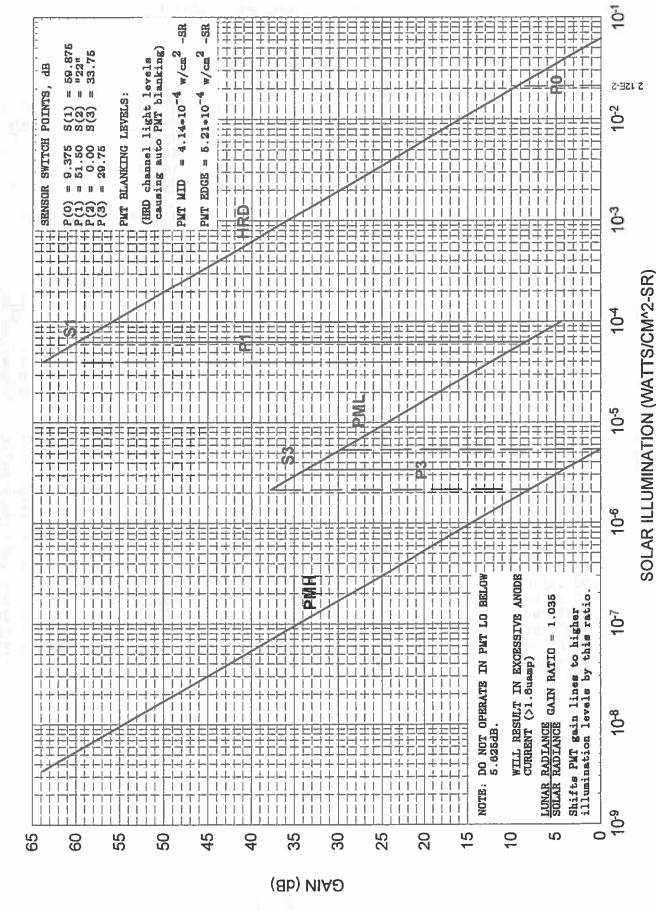
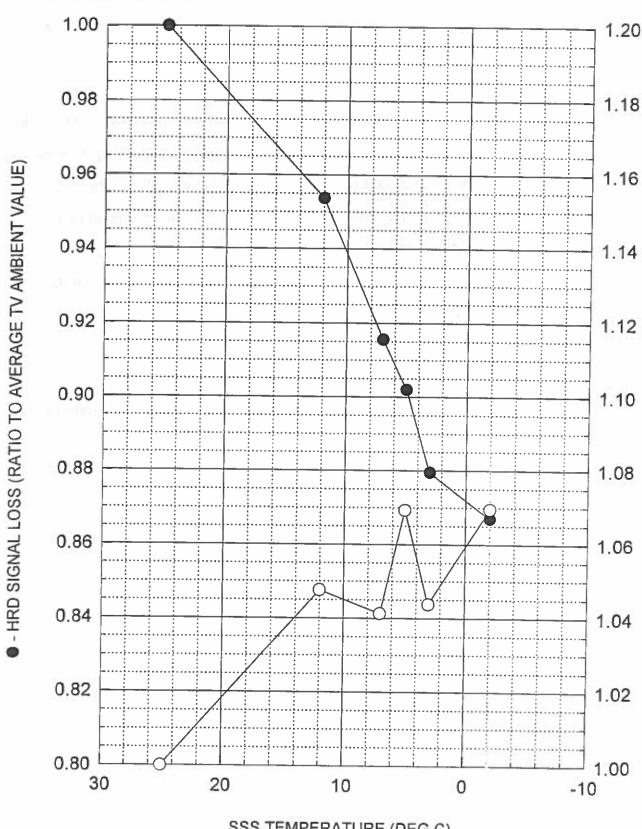


Table 2.4.2-1
OLS #19 L DC Response Stability


Stability vs. Time (6x2x1.ST data using VULS)

DATE	PMT LO de	PMT LO HRD	PMT HI ds
07/30/93	29.74	49.51	79.25
08/31/93	29.72	49.82	79.54
12/03/93	29.75	50.45	80.20
01/19/94	<u>29.73</u>	50.49	80.22
Average	29.74	50.07	79.80
(Direct Multiple)	(30.69)	(318.79)	(9775.19)

Stability vs. Temperature (6x2x2.ST data using half sphere source)

DATE 10/09/93 10/25/93 10/25/93 01/24/94 Average	ENVIRONMENT TVAC Amb TVAC Amb TVAC Amb TVAC Amb	PMT HI PMT LO d8 29.73 29.65 29.62 29.67 29.67	PMT LO HRD d8 40.53 41.09 41.39 41.15 41.04	PMT HI HRD d8 70.26 70.75 71.01 70.82 70.71
DATE 10/13/93	ENVIRONMENT +5/+12	PMT HI PMT LO dB 29.50	PMT LO HRD dB 41.93	PMT HI HRD 48
11/05/93	-2/-11	29.69	43.44	73.13
11/07/93	+12/+15	29.77	42.31	72.09
11/13/93	+3/-8	29.68	43.07	72.75
11/22/93	+7/+12	29.66	42.59	72.25
01/27/94	+12/+15	29.65	42.19	71.84
01/29/94	-2/-11	29.71	43.30	73.01
02/11/94	+12/+15	29.56	42.30	71.86
02/14/94	-2/-11	29.66	43.30	72.96
02/16/94	+5/-8	29.74	43.10	72.84
03/04/94	+12/+15	29.66	42.32	71.99
03/05/94 Average	-2/-11	29.71 29.66	<u>43.54</u> 42.78	<u>73.25</u> 72.45
Aver age		29.00	42./8	12.45

PMT / HRD DC RESPONSE vs TABLE 2.4.2-2 -SSS TEMPERATURE - OLS 19

SSS TEMPERATURE (DEG C)

2.4 Radiometric Accuracy. (Cont'd)

2.4.3 Nighttime Radiometric Accuracy (3.2.1.1.4.3)

The PMT accuracy is required to degrade by no more than 60% from its initial accuracy at time of Acceptance testing to end of 3 year orbital life.

The 5D-3 OLS System Summary Report indicates PMT channel stability to be within 25.7% over the mission life so that the PMT meets this specification requirement. The above figures do not include corrections utilizing on-board LED calibration. The PMT CAL LED is extremely stable, and has an essentially constant output over the mission life.

The DC response curve of the OLS #19 PMT is shown in the L Channel DC Response curve in paragraph 2.4.2.

ATTACHMENT: Table 2.4.3-1 PMT CAL Baseline data

(See para 2.4.2 attachment for L. Chan. DC Response curve)

TABLE 2.4.3-1 PMT CAL BASELINE DATA

The PMT Cal voltage EST is a monitor of PMT sensitivity and stability characteristics. In order to relate on-orbit measurement of PMT CAL to measurement during Acceptance Test, the following data are provided. PMT CAL Voltage (EST #40) and PMT BU (Back-up) CAL V (EST #41) are sampled 500 times in test 6x6x2.ST. The PMT Cal voltage EST output is tabulated below.

TABLE 2.4.3-1
PMT CAL BASELINE DATA

	<u>DATE</u>	SSS TEMP	OUTPUT V	OLTAGE (mV)
			PMT CAL V (EST #40)	PMT BU CAL V (EST #41)
07	7-29-93	+25	2543	2546
09	9-03-93	+25	2566	2564
10	0-09-93	+25	2561	2566
11	l-14 - 93	+3	2592	2593
11	1-23-93	+7	2589	2589
01	-24-94	+25	2560	2561
01	-28-94	+12	2563	2571
01	-29-94	-2	2579	2584
02	2-11-94	+12	2546	2556
02	!-14-94	-2	2566	2562
02	-16-94	+5	2556	2555
		AVERAGE	2566	2568
Max	change	from AVERAGE	1.03%	0.98%

2.4 RADIOMETRIC ACCURACY, (Cont'd)

2.4.4 Gain Control Accuracy (3.1.4.4)

Along-Scan Gain Control (ASGC) accuracy is within the specification limit of 4dB of the smooth monotonic curve drawn through the nominal values of Gain Value versus Scense Solar Elevation (GVVSSE), tabulated in para 3.2.1.1.1.4 of S-DMSP-886.

System Tests 5x6x3.ST and 5x6x6.ST exercise the ASGC function through various combinations of extremes of slope and bias adjustment; and measure channel output for a wide range of values. These are automatically compared against stored test limits which ensure spec compliance.

An analysis using the ASGC software algorithm showing 3.25dB maximum error is summarized in the System Summary Report paragraph 3.5.4.

ATTACHMENTS: None.

2.4 RADIOMETRIC ACCURACY, (Cont'd)

2.4.5 Gain Control Adjustability (3.2.1.1.4.4 et al)

The OLS #19 Gain Control Adjustability is similar to the 5D-1 systems. The OLS 5D-3 System Summary Report paragraph 3.5.5 contains the analysis required to demonstrate conformance with the specifications, with additional information below.

TERMINATOR LOCATION (3.1.4.5.1)

The GNC Command (an uplink command) has a sub mode (GNC $10~\theta~X$) which allows the GVVSSE bias (terminator location) to be adjusted by X degrees, where X is a 6-bit 2's complement word with an LSB of 0.5°. This results in the required range of +~15.5 degrees.

MAXIMUM GAIN SETTING (3.2.1.1.4.5.3)

The maximum ASGC gain is commandable. An operational value is determined in Early Orbit Calibrations. The value is stored in the Operational Constants Memory location page 0 Address 44H (BCMAX). The ASGC function & performance are exercised in tests 5x6x3.ST & 5x6x6.ST

COMMANDABLE T-CHANNEL GAIN (3.2.1.1.4.5.4)

The T-Channel Commandable Gain is exercised in test 6x8x2.ST. The channel output is measured for the entire range of commandable gains. The T Channel Gain is required to have the capability of being varied by command to be between 164% and 174% of the established minimum gain value (0 dB).

The actual percentage of TGAIN change for OLS #19 was measured as 69.0% for T Right and 69.1% for T Left.

Each step of TGAIN is required to be between 0.9% and 2.5% above the preceeding lower gain value. Measured gain steps on OLS #19 ranged from 1.62% to 1.91%, within specification.

COMMANDABLE T CHANNEL LEVEL (3.2.1.1.4.5.5)

The T Channel Commandable Level is also exercised in test 6x8x2.ST. The specification requires that TLEVEL be variable over at least a 14° range in steps of 1.1°K or less. Measured results for OLS 19 testing were 15.2° range with an average step size of 1.016°K; both within specification.

2.4 RADIOMETRIC ACCURACY, Cont'd

2.4.6 <u>A/D Conversions & Algorithms</u> (3.2.1.1.4.6.2 & 3.2.1.1.4.6.3)

S-DMSP-886 specifies that the Stored Smooth Algorithm accuracy with an ideal A/D shall be verified by analysis. OLS 5D-3 System Summary Report contains the analysis which shows that the LS % Full Scale Deviation does meet the specification. The results are summarized below:

<u>Mode</u>	% Full Scale Deviation	Analysis
LS	< ± 2.2%	-1.70%, +2.09%
TS	$\leq \pm 0.4\%$	+ 0.39%

The Actual A/D Conversion Radiometric Accuracy was measured in system test 6x10.ST. The worst-case results from the OLS #19 Thermal Vacuum runs are summarized below:

A/D_	BSL SLOPE (% DEV FROM IDEAL)	BSL OFFSET (% OF FULL SCALE)	RMS DEV FROM BSL (% OF FULL SCALE)
SDF-L PRIM	-0.20	-0.02	0.05
RED	-0.37	-0.06	0.05
SDF-T PRIM	-0.45	+0.08	0.12
RED	0.14	-0.08	0.13
RTD-FL PRIM	+0.11	+0.04	0.04
RED	-0.09	+0.06	0.03
RTD-FT PRIM	+0.10	-0.08	0.09
RED	+0.01	-0.14	0.09
SPEC	<u>+</u> 1.0	±1.0 m mm	0.50
RTD-SL PRIM	-0.46	-0.02	0.02
RED	-0.17	-0.06	0.03
RTD-S7 PRIM	-0.42	-0.08	0.06
RED	-0.31	+0.04	0.07
SDS-L PRIM	-0.19	+0.16	0.04
RED	-0.14	+0.10	0.03
SDS-T PRIM	-0.08	-0.26	0.03
RED	-0.11	-0.20	0.04
SPEC	<u>+</u> 0.5	<u>+</u> 0.5	0.25

2.5 RADIOMETRIC RESOLUTION (3.2.1.1.5 et al.)

S-DMSP-886 apportions the Radiometric Resolution verification between Test and Analysis.

The Fine and Direct Smoothed Radiometric Resolution (para. 3.2.1.1.5.1), as well as the Stored Smoothed A/D Converter Error (para. 3.2.1.1.5.2), were measured in System Test 6x10.ST during the OLS #19 vacuum runs and are tabulated below:

	PEAK DEV FROM BSL	
A/D	(% OF FULL SCALE)	<u>SPE</u> Ç
SDF-L PRIM	+0.09	±0.8%
RED	+0.11	
SDF-T PRIM	+0.26	+0.8%
RED	+0.26	
RTD-FL PRIM	+0.08	+0.8%
RED	-0.05	
RTD-FT PRIM	-0.16	+0.8%
RED	+0.16	
RTD-SL PRIM	+0.04	±0.25%
RED	0.05	
RTD-ST PRIM	-0.15	+0.25%
RED	0.15	
SDS-L PRIM	+0.08	+0.5%
RED	-0.08	===
SDS-T PRIM	-0.06	±0.5%
RED	-0.07	7 77

The Stored Smoothed Algorithms Resolution with Ideal A/D (para. 3.2.1.1.5.2.1) are verified by Analysis in OLS 5D-3 System Summary Report, and are summarized in Table 2.5.1.

TABLE 2.5-1 Stored Smoothed Algorithms Resolution With Ideal A/D

ITEM	SPEC	<u>ACTUAL</u>
Accuracy		
LS Algorithm	< <u>+</u> 2.2%	-1.70% +2.09%
TS Algorithm	< <u>+</u> 0.4%	<u>+</u> 0.39%
Resolution		
LS Algorithm	<1.6%	1.57%
TS Algorithm		
Population 1 Density Quantization	25% <0.8%	25% 0.78%
Population 2 Density Quantization	75% <0.4%	75% 0.39%
Population Distribtution	Uniform	Uniform
Quantization Capability	0.4%	0.4%

2.6 NOISE

2.6.1 <u>T Channel Noise</u> (3.2.1.1.6.1)

The T Channel noise equivalent temperature difference (NETD) is specified between 210K and 310K, although the T channel responsivity extends down to 190K.

The NETD is measured during T Channel DC response tests in the Thermal Vacuum Chamber.

The Channel views a stable blackbody target at 210K (worst-case noise). The channel output is sampled & the noise (std. deviation) of 2000 samples is converted to NETD using the following formula:

NETD = [Avg Noise in Volts * 24 •/Volt] * 1.074 (the shaper slope correction)

The OLS #19 NETD is in-spec. The average noise in the T Right segment is 10.9% larger than in the T Left segment.

	TF	TS	TS Fallback
SPEC	2.2°K	0.90•K	1.3°K
Worst-Case Measured NETD	0.752°K	0.392•K	0.501•K
Worst-Case Average NETD	0.704°K	0.305°K	0.413°K

ATTACHMENT: Table 2.6.1-1 OLS #19 NETD

Table 2.6.1-1

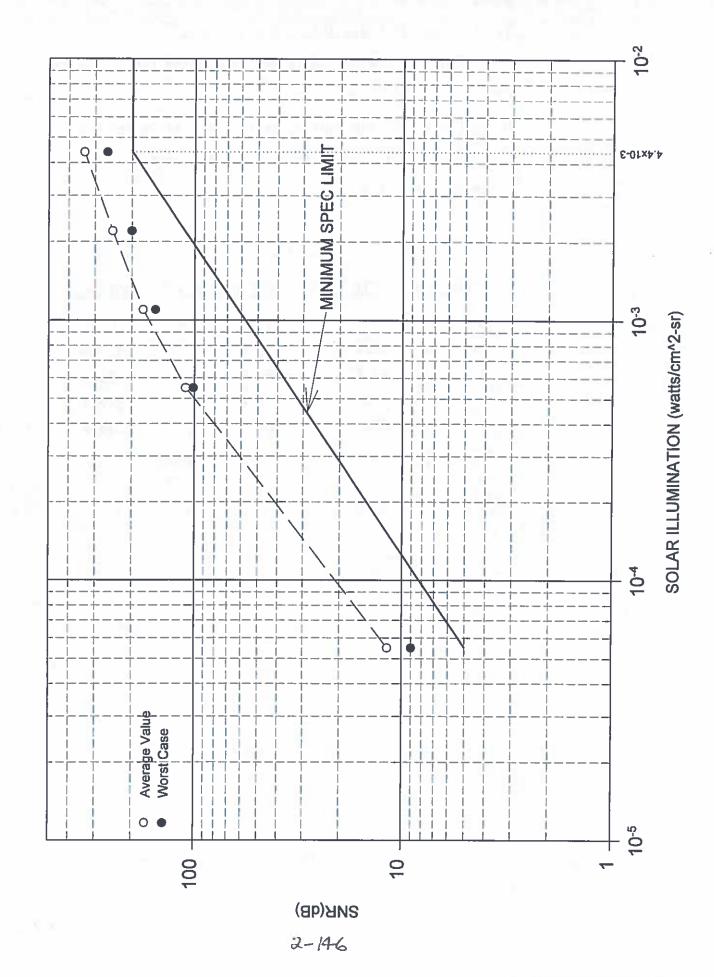
	OLS #19 PRIMARY SIDE NETD												
						Noise mV							
DATE	SSS	M1	ΓG R/L	TL	FINE RGT	SMOOTH RGT	FINE MID	SMOOTH MID	FINE	SMOOTH LFT			
10/14/93	5	12	6/6	3	27.80	16.03	19.43	11.96	24.63	14.39			
10/16/93	5	-8	6/6	13	27.32	15.28	17.54	11.21	24.90	13.90			
10/19/93	-2	-11	6/6	13	27.16	16.86	19.30	11.92	24.91	14.42			
10/20/93	12	15	6/6	7	25.42	14.17	18.35	10.58	23.66	12.77			
11/04/93	7	12	6/6	8	26.49	15.68	20.25	12.65	25.09	14.64			
11/05/93	-2	-1	6/6	13	27.70	15.19	19.29	12.95	25.16	13.96			
11/07/93	12	15	6/6	8	26.02	15.00	17.42	9.40	23.15	11.74			
11/09/93	-2	-11	6/6	13	28.00	15.81	20.14	12.90	24.84	13.52			
11/11/93	12	15	6/6	8	26.42	15.16	17.84	9.25	23.90	11.92			
11/13/93	3	-8	6/6	13	27.23	16.22	18.44	11.19	23.96	14.43			
11/22/93	7	12	6/6	8	27.29	15.28	19.83	12.86	24.84	14.58			
1/28/94	12	15	6/6	8	26.90	15.03	17.40	9.73	22.88	11.98			
1/29/94	-2	-11	6/6	13	29.18*	17.19	20.74	13.36	25.55	17.04*			
2/12/94	12	15	6/6	8	26.76	15.88	17.17	9.57	22.53	12.12			
2/14/94	-2	-11	6/6	13	27.48	15.56	19.75	12.08	25.23	14.90			
2/16/94	5	-8	6/6	13	27.20	17.00	19.00	11.06	25.35	14.78			
03/04/94	12	15	6/6	8	28.39	19.44*	20.26	15.20*	25.68	15.57			
03/05/94	-2	-11	6/6	13	28.53	17.39	21.04*	14.88	26.08*	17.00			
			AVERA(NETD	GE	27.30 0.655 0.704	16.01 0.384 0.413	19.07 0.458 0.492	11.82 0.284 0.305	24.57 0.590 0.633	14.09 0.338 0.363			

^{*} Worst Case Measured ** Shaper Slope Correction Factor = 1.074

Table 2.6.1-1

	T)F2 #1	9 KEDUNDA	NT SIDE N	EID						
			171			Noise mV							
DATE	SSS	M1	G R/L	TL	FINE RGT	SMOOTH RGT	FINE	SMOOTH MID	FINE LFT	SMOOTH LFT			
11/04/93	7	12	6/6	8	27.17	14.63	19.90	12.66	24.84	15.53			
11/04/93	7	-8	6/6	13	27.15	15.98	18.50	10.79	24.04	13.89			
11/13/93	3	-8	6/6	13	27.58	16.73	18.43	10.80	25.08	14.42			
11/22/93	7	-12	6/6	8	27.03	15.55	19.65	12.01	24.50	14.17			
AVERAGE NETD NETD Correction for Shaper Slope** Worst Case Corrected NETD			27.23 0.654 0.702 0.752	15.72 0.377 0.405 0.501	19.12 0.459 0.493 0.542	11.57 0.278 0.298 0.392	24.62 0.591 0.634 0.672	14.50 0.348 0.374 0.439					

^{**}Shaper Slope Correction Factor = 1.074

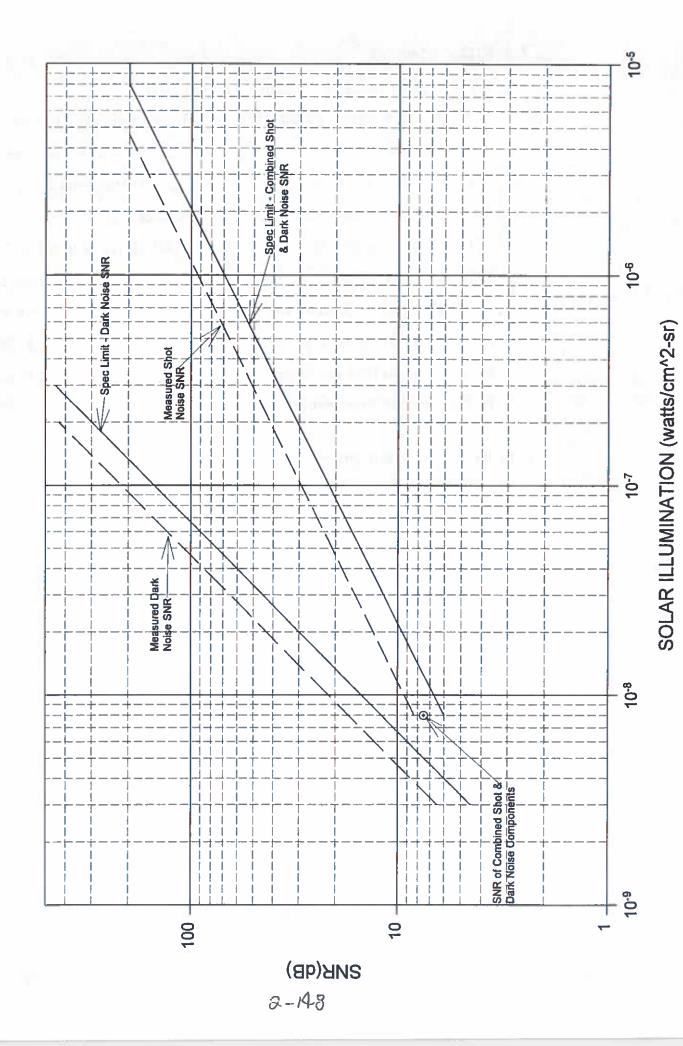

2.6.2 <u>L-Channel Noise (Day)</u> (3.2.1.1.6.2)

The L Channel Noise is measured using the calibrated Variable Uniform Light Source (VULS). Dark noise is measured in test 6x3x1.ST and shot noise is measured in 6x3x5.ST.

The OLS #19 HRD is in-spec for the entire range of illumination. In summary:

-		SNK	
LIGHT LEVEL	<u>SPEC</u>	WORST CASE MEASURED	<u>AVERAGE</u>
5.5×10^{-5}	5	9.0	11.5
5.5×10^{-4}	34.8	101.4	110.0
1.1×10^{-3}	62.3	153.9	176.8
2.2×10^{-3}	112	200.7	247.9
4.4×10^{-3}	200	263.4	338.6

ATTACHMENT: OLS #19 HRD Channel SNR Graph



2.6.3 <u>L Channel Noise (Night)</u> 3.2.1.1.6.3)

The PMT dark noise is measured in all environments in Tests 6x3x1.ST, 6x3x2.ST and 6x3x4.ST. The SNR is calculated from the measured noise (std. deviation of multiple voltage samples) vs. light level and compared against spec values.

The minimum (worst case) OLS #19 PMT Shot Noise SNR was 8.3 at 8.0×10^{-9} watts/cm²-sr. The worst case measured Dark Noise SNR was 17.3 which is better than the specification requirement of 12. The worst case combined PMT shot noise and dark noise SNR is 7.50 calculated as SNR=1/ $\sqrt{1/(\text{SNR dark})^2 + 1/(\text{SNR shot})^2}$ which is better than the spec limit of 6.0..

ATTACHMENT: OLS #19 PMT channel SNR graph.

2.6.4 Dark Current (3.2.1.1.6.4)

The Dark Current (the PMT noise with no signal input) is determined from the graph of PMT SNR in paragraph 2.6.3. The Dark Noise SNR is calculated from data gathered during PMT Smoothed Noise measurements. These measurements are made in Test 6x3x1.ST during Thermal Vacuum testing. For OLS #19 the average Dark Noise SNR at 8×10^{-9} watts/cm²-SR is 20.8, or 28.9% of the noise corresponding to an SNR of 6. The MINIMUM Dark Noise SNR measured at 8×10^{-9} watts/cm²-SR was 17.3, or 34.7% of the noise corresponding to a SNR of 6. This is well within the spec requirement for the dark current to be 50% or less of the noise corresponding to an SNR of 6.00.

2.6.5 Stability (3.2.1.1.6.5) (L - Channel (night)

The OLS 5D-3 System Summary Report contains the analysis for this spec requirement.

The loss in sensitivity after 3 years on orbit of the PMT channel will be < 23%. This would require 2.27dB change in VDGA gain to compensate and over 6dB of VDGA gain is available.

2.6.6 Along-Track Noise Integration (3.2..1.1.6.6)

OLS 5D-3 System Summary Report contains the analysis which concludes that the OLS 5D-3 algorithm is consistently above 0.6 times the SNR resulting from perfect integration with 8 bit A/D for T Channel; and above $1/\sqrt{2}$ times the SNR resulting from perfect integration with 6-bit A/D for L channel. Therefore, the Along-Track Noise Integration is in-spec.

2.6.7 Glare Suppression (3.2.1.1.6.7)

OLS 5D-3 System Summary Report contains the analysis which verifies that the OLS does provide effective protection against solar glare for sun angles between 75° and 95°.

2.7 SURVIVABILITY (3.2.7)

The OLS 5D-3 System Summary Report contains calculations of survivability. OLS testing has provided values of A=42 and B=0.38 for A and B as defined in BVS 2740. See BVS 2740 (Verification of Survivability Requirements) for further details.

2.8 <u>SCAN ANGLE</u> (3.2.1.1.8)

Tests 6x7x1.ST and 6x7x3.ST (End of Scan Vignette for HRD & T channels respectively) measure the delphi number at which 1% vignetting of scene begins to occur. The measured delphis enable calculation of the altitude needed to obtain contiguous coverage at the equator. The contiguous coverage requirement is based on the average of +Z and -Z scan angles.

For OLS #19, the following results were obtained:

CHANNEL	DELPHI	SCAN ANGLE	CONTIGUOUS COVE	RAGE ABOVE:
+Z HRD	+989.5	+55.87•	428.97 n. mi.	400 70
-Z HRD	-988.0	-55.79•	430.61 n. mi.	429.79 avg.
+Z T	+979.5	+55.31•	439.94 n. mi.	407.10
-Z T	-984.5	-55.59°	434.44 n. mi.	437.19 avg.

Thus, both the HRD channel and the T channel meet the requirements for contiguous coverage above 440 naut. mi, since both channels will provide contiguous coverage for all altitudes above 437.19 naut. mi.

2.9 DATA COLLECTION RATE (3.2.1.1.9)

OLS #19 does scan the field of view at the prescribed $11.88 +/\sim$.12 Hz rate. This parameter is measured in Scanner Functional tests 5x12x1.ST (Primary Side) and 5x12x2.ST (Redundant Side).

The test results are summarized below for all TV tests:

Date	Frequ <u>Primary</u>	ency, Hz <u>Redundant</u>
10-13-93 Optic Limit	11.90	11.91
11-02-93 Optic Limit	11.91	11.91
11-19-93 Cold Limit	11.91	11.91
11-27-93 Hot Limit	11.89	11.90

2.10 POWER (3.2.1.3.1 and 3.2.1.3.2)

Both +28V and +5V power is measured and monitored continuously throughout all of the test sequence.

The power required in the eight Development-Spec-defined modes is tabulated below. The Development Spec Power Profile is measured in test 5x2x11.ST for modes 1 through 8 and 5x2x2.ST for mode 0.

10V power consumption is not tested. The current system test equipment is not capable of monitoring 10V power. Analysis of the components using S/C supplied 10V power indicates that 5D-3 10V power consumption is in spec.

S-DMSP-886 limits 28V power consumed for SSS thermal control to 23 watts maximum. SSS heater power consumption was not measured.

Analysis of the heater resistances and tolerances indicates that 5D-3 SSS heater power consumption is in spec.

OLS #19 28V power consumption is in spec for all modes in the primary and redundant configurations. Fallback (dual power) configuration power consumption is also in spec. See the attached table for further details.

ATTACHMENTS: OLS #19 Power Profile

OLS #19 POWER PROFILE

	1	SINGLE POWER	DUA	AL POWER	
MOD	<u>28V</u> E/LIMIT	TV COLD LIMIT 11-14-93	TV HOT LIMIT 11-26-93	28V LIMIT	**WORST CASE (CALCULATED)
0	88W	40	40	131W	59
1	105W	68	70	148W	89
2	116W	78	78	159W	97
3	125W	85	85	168W	104
4	157W	119	121	200W	140
5	167W	128	130	210W	149
6	198W	153	156	241W	175
7	207W	168	172	250W	191
8	218W	178	181	261W	200
MODE	5V /LIMIT				
0	6.0W	3	4		
1	6.0W	3	4		
2	6.0W	3	4		
3	6.0W	4	4		
4	6.0W	4	4		
5	6.0W	4	4		
6	6.0W	4	4	į	
7	6.0W	4	4		
8	6.0W	4	5		

2.11 MASS

2.11.1 Total Mass (3.2.2-1)

The total weight of OLS #19 is 295.0 lbs. as shown in Table 2.11.1. The tape recorders to be delivered with OLS 19 are currently unspecified. The max spec limit of 91 lbs. for total tape recorder weight was used to calculate the total weight.

2.11.2 <u>Component Mass</u> (3.2.2.2)

All Westinghouse furnished parts meet their center of gravity specification limits and their maximum specified weight allocation as shown in Table 2.11.1.

ATTACHMENT: Table 2.11.1 - OLS #19 Weight and Center-of-Gravity
Table

TABLE 2.11.1) - REWISES - STE HITHERED - STE HITHERED - STEE HITHERED - STEE HITHERED - STEEN NEW THOUS 19 SYSTEM WESTINGHOUSE FURNISHED PARTS SUPPLIED WITH OLS 19 SYSTEM SUMMARY OF WEIGHT AND CENTER GRAVITY

VEIGHT	ACT	57.9	59.3	18.9	26.3	3.7	7.5					30.4	2.9	
WEI	MAX* SPEC	6.72	59.3	18.9	26.3	3.7	7.5					40.0	4.0(2)	
	ACT	69.0	8.53	5.81	7.02	2.73	2.87					1	2.37	
<u>Z</u>	SPEC	0.7±0.5	8.6±0.8	6.0±0.5	7.2±0.5	2.5±0.5	3.0+0.5				-	1	2.25±1/8	
	ACT	6.35	13.07	6.67	6.72	4.30	0.19					11	2.72	<
-	SPEC	6.2±0.5	13.0+0.5	6.6±0.5	7.0±0.5	4.0+0.5	0.1±0.3			ı		1	2.62±1/8	
×	ACT	1.65	3.03	2.95	2.79	1.42	4.34	1				١	1.14	
- In	SPEC	1.8±0.5	3.0+0.5	3.0+0.5	2.8+0.5	1.2±0.25	4.2±0.5	-			1	1	1.25±1/8	
•	SER. NO.	5014	5014	5014	5014	5014	5014	180	TB0	TBD	180	(1)		
	UNIT	\$55	SPS	SPU	PSU	020	GSSA/DOC	PR1	PR2	PR3	PR4	CABLES	684	

*S-DNSP-886 11 FEB 1993 **Assumes MAX Spec Limit of 91 lbs. for PR's.

295.0**

300

2-159

(1) SERIAL NUMBERS ARE AS RECORDED ON DATA SHEET (2) The weight of 884 is not included in the 300 1b requirement and is excluded from the weight calculation.

WESTINGHOUSE FURNISHED PARTS SUPPLIED WTH OLS 19 SYSTEM SUMMARY OF WEIGHT AND CENTER OF GRAVITY **TABLE 2.11.1**

				-	est.					100				
WEIGHT(lbs)	ACT	57.9	59.3	18.9	26.3	3.7	7.5					30.4	2.9(5)	705 0(2)
WEIG	MAX(1) SPEC	59.0	65.0	20.5	29.0	4.5	9.0					40.0	4.0(5)	30073)
Z(in)	ACT	0.67	8.53	5.81	7.02	2.73	2.87						2.37	
	SPEC	0.7±0.5	8.6±0.8	6.0±0.5	7.2±0.5	2.5±0.5	3.0±0.5						2.25±1/8	
Y(in)	ACT	6.35	13.07	29.9	6.72	4.30	61.0						2.72	
	SPEC	6.2±0.5	13.0±0.5	6.6±0.5	7.0±0.5	4.0±0.5	0.1±0.3						2.62±1/8	
X(in)	ACT	1.65	3.03	2.95	2.79	1.42	4.34			-			1.14	
	SPEC	1.8±0.5	3.0±0.5	3.0±0.5	2.8±0.5	1.2±0.25	4.2±0.5						1.25±1/8	
UNIT	SER.NO.	5014	5014	5014	5014	5014	5014	TBD	TBD	TBD	TBD	(4)	7	
	TINO	SSS	SPS	SPU	PSU	osn	GSSA/DOC	PRI	PR2	PR3	PR4	CABLES	BB4	

Assumes MAX Spec Limit of 91 lbs. For PR's This is the max spec weights imposed on the individual units

S-DMSP-886 11 Feb. 1993
 Assumes MAX Spec Limit of 91 lbs. For PR's
 This is the max spec weight for the OLS AVE and is independent of the max spec weights imposed on the
 Serial Numbers are as recorded on data sheet
 The weight of BB4 is not included in the 300 lb requirement and is excluded from the weight calculation.

2-159

BVS 2759

2.12 COOLER TRANSIENT MARGIN (3.2.2.5)

The T channel cone cooler transient cooldown cooling capacity margin is tested by the file 7x7.ST. An external power supply provides 1/2 Watt of heating to the outer stage of the cooler during a normal cooldown. On OLS #19 cone cooler S/N O31 successfully reached its operating set-point with 1/2 watt of external power applied, demonstrating the required margin.

2.13 <u>DESIGN FEATURES</u>

The following design features of the 5D-3 OLS are addressed in the analyses. The analyses are contained in the OLS 5D-3 System Summary Report. The requirements of the Design Features are met or exceeded in each category.

SUBJECT	SPEC. PARA.
DESIGN INTERFACES	(3.1.2)
RELIABILITY	(3.2.3)
WEAROUT/CONSUMPTION	(3.2.3.3)
STORAGE	(3.2.3.4)
CONTAMINATION CONTROL	(3.2.3.5)
CORROSION OF METAL PARTS	(3.2.3.6)
MAINTAINABILITY	(3.2.4)
INTERCHANGEABILITY	(3.3.5)

2.14 REDUNDANT AND FALLBACK SUBSYSTEMS (3.2.3.1 & 3.2.3.2)

Paragraph 3.2.3.1 of the development spec requires the OLS to incorporate the following redundant subsystems:

- (1) Along-Scan Gain Control
- (2) Main Bus Power Supplies
- (3) Data Processors
- (4) Memories
- (5) I/O Interfaces
 - a. Bus Controls
 - b. I/O Controls
 - c. S/C Interfaces
 - d. WOW/Flutter Signals/Clock Drivers
 - e. Drive Motor Controls
 - f. Sensor Controls
 - g. Gain Controls
 - h. Encoder Processors
- (6) Data Channels
 - a. Smooth Video Filters
 - b. Fine Video Filters
 - c. T-Channel Post Amplifiers
 - d. SDS Channel
 - e. SDF Channel
 - f. RTD Channel
 - g. Special Sensor Processors
 - h. Output Data Multiplexers
 - i. RDS Channel
- (7) Output Switching Unit Oscillator and Clock Circuits
- (8) Digital Tape Recorders (Three of Four Required)

- (9) Output Data Channels (Three of Four Required)

 Paragraph 3.2.3.2 requires the OLS to incorporate the following fallback subsystems:
 - (1) IMC Shut-Off Mode.
 - (2) HRD Detector Single Segment Select, with associated electronics.
 - (3) T-Detector Single Segment Select, with associated electronics.
 - (4) Digital Generation of Delphi Scanner Clock.
 - (5) PMT Shut-Off Mode

Redundant and fallback subsystems are verified by test during the normal test flow either by repetition of the relevant test on the alternate subsystem (in the case of a redundant subsystem) or by tests designed to verify the specific subsystem (in the case of a fallback subsystem). In each case, any out-of-specs or anomalies are reported as part of the relevant Test Report paragraph.

2.15 **ENVIRONMENT**

The following environmental requirements are addressed in analyses and are contained in the OLS 5D-3 System Summary Report. The Thermal Vacuum (except CHA), Random Vibration, and shock requirements are verified by the successful completion of the approved Test Procedure.

The 5D-3 Environmental requirements of the Development Specification are met or exceeded by the OLS #19 AVE.

SUBJECT	SPEC. PARA
GROUND ENVIRONMENT	20.2.1
LAUNCH ENVIRONMENT	20.2.2
THERMAL VACUUM (CHA)	20.2.2.1
ACCELERATION	20.2.2.5
CHARGED PARTICLE ENVIRONMENT	20.2.2.6
LAUNCH PRESSURE PROFILE	20.2.2.8
ACCOUSTIC FIELD	20.2.2.9
TRANSPORATION & HANDLING ENVI	RONMENT 20.2.3

3.0 INTERFACE SPECIFICATION REQUIREMENTS

Electrical Interface parameters are measured in the OLS Detailed Electrical Test (T927989) and the OLS Special Sensor Detailed Electrical Test (T927992). These tests demonstrated conformance with all applicable Interface Specification requirements. The only Interface related system measurements that vary significantly from system to system are the SSS Alignment axes which are included here.

3.1 SSS ALIGNMENT AXES

The OLS #19 SSS Reference Plane axes are within the specification allowances. The results of system test and calculation are given below. The designations are those in Interface Spec ICD-88802, para. 3.2.3.2.

SECONDARY REFERENCE AXES TO PRIMARY AXES

SECONDARY REFERENCES AXES TO MOUNTING (INTERFACE) AXES

 $X_{R-P} = 0.538 \text{ mrad} = 111 \text{ arc sec}$ $X_{R-M} = 0.485 \text{ mrad} = 100 \text{ arc sec}$

 $Y_{R-P} = 0.194 \text{ mrad} = 40 \text{ arc sec}$ $Y_{R-M} = 0.082 \text{ mrad} = 17 \text{ arc sec}$

 $Z_{R-P} = 0.538 \text{ mrad} = 111 \text{ arc sec}$

 $Z_{R-M} = 0.495 \text{ mrad} = 102 \text{ arc sec}$

These are within the specification limits of 600 arc seconds. The Mounting (Interface) Axes to Primary axes are also calculated, using the computer program REFPLN and are given below:

 $X_{M-P} = 0.112 \text{ mrad} = 23 \text{ arc sec}$

 $Y_{M-P} = 0.189 \text{ mrad} = 39 \text{ arc sec}$

 $Z_{M-P} = 0.160 \text{ mrad} = 33 \text{ arc sec}$

These are within the specification limits of 120 arc seconds.